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Abating Carbon Dioxide Emissions from 
Electric Power Generation: Model Uncertainty 
and Regulatory Epistemology

Alan H. Sanstad

ABSTRACT

Computational modeling of natural, economic, and technological systems is a primary anal

ytical methodology in US energy and environmental regulation. Validating or otherwise eval

uating such models and analyzing the uncertainties involved in their regulatory applications 

have become both more important and more challenging. This paper reviews these issues in 

the context of an important recent example involving energy, the US Environmental Protection 

Agency’s (EPA’s) development of regulations to reduce carbon dioxide emissions from electric 

power plants using a numerical model of the US electric power system. Following a summary 

of background information about greenhouse gas abatement policy, the paper discusses the 

 agency’s general computational model evaluation philosophy; the history of, and current prac

tices in, energy model evaluation; the specific model used by the EPA and its application to 

carbon dioxide regulation; and the concept of fundamental model uncertainty and its signifi

cance for this modeling domain.

1. INTRODUCTION

Computational modeling has become a primary regulatory methodology 
in the decades since the modern American environmental policy regime 
was established in the late 1960s and early 1970s. Models of environ-
mental processes, energy systems, and economic impacts have prolifer-
ated and have become ever more critical to environmental policy making 
and regulation, while also becoming increasingly complex. Accordingly, 
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the problems of validating or otherwise evaluating such models and char-
acterizing and measuring the uncertainties associated with their use in 
regulatory applications have become both more important and more 
challenging.

One of the most important current applications of computational 
modeling in environmental policy is the development of policies to re-
duce emissions of greenhouse gases (GHGs), particularly carbon di-
oxide (CO2), from the production and consumption of energy. In the 
long- running climate science and policy debate, the validity of and uncer-
tainties associated with numerical models of the global climate system—
general circulation models—and their projections of future climate trends 
have been the subject of considerable controversy in policy circles and 
the political arena. But the corresponding issues in the realm of energy, 
economic, and policy modeling for GHG abatement policy have received 
much less attention.

This paper reviews issues of model validity, evaluation, and uncer-
tainty with reference to an important recent example, the US Environ-
mental Protection Agency’s (EPA’s) development of regulations to reduce 
CO2 emissions from electric power plants. These were based on a quan-
titative analysis using an established numerical energy model, employed 
by the EPA for over a decade and maintained and operated in a manner 
consistent with the agency’s guidelines for model evaluation and quality 
control.

Validating or evaluating computational models is a complicated 
subject, with theoretical frameworks and quantitative methods varying 
widely across disciplines; there are no definitions of these terms that ap-
ply universally. Nonetheless, in the physical and engineering sciences, 
these activities have traditionally been firmly although not exclusively 
grounded in the concepts of empirical fidelity and predictive accuracy 
(Oberkampf and Roy 2010; NRC Committee on Mathematical Founda-
tions 2012). By contrast, as discussed in this paper, these concepts have 
come to be all but absent in the field of energy modeling and in key regu-
latory applications. This paper highlights the fact that a rigorous alterna-
tive epistemology for energy modeling and its regulatory applications has 
yet to be developed.

The issues discussed here offer a certain perspective on practical com-
pliance, in the case of energy policy, with the requirements of the White 
House Office of Management and Budget’s Circular A-4 on cost-benefit 
analysis of federal regulations (Office of Management and Budget 2003). 
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Many policy problems, and prospective regulations, are sufficiently com-
plex that computational models of one form or another are needed to 
perform the calculations stipulated by Circular A-4. In the domain of en-
ergy policy, this is in fact the rule. Circular A-4 includes guidelines for the 
treatment of uncertainty. A reasonable interpretation of these guidelines 
is that they reflect the view that dealing with uncertainty is an elabora-
tion, albeit an important one, on the basic elements of cost-benefit analy-
sis. As described in this paper, however, there are forms of uncertainty at-
tending the design and application of energy models that are fundamental 
but currently neither well understood nor the subject of active research. 
Thus, the reliance on computational modeling for cost-benefit analysis 
raises the question of how well such analysis, in the case of energy, com-
plies with the Circular A-4 requirements.

The paper is organized as follows. The next section provides back-
ground on national and international attempts to implement GHG emis-
sions abatement policy over the past several decades and then summarizes 
the EPA’s recent actions on CO2 emissions from electric power genera-
tion. Next is an overview of the Integrated Planning Model (IPM), the 
computational model used by the EPA for this purpose. The paper then 
turns to the history of validation and quantification of uncertainty in en-
ergy modeling in general and describes current standard practices in the 
application of these models to policy analysis. Following a further discus-
sion of the IPM, the idea of fundamental model uncertainty is introduced. 
The paper ends with concluding remarks.

2. BACKGROUND ON GREENHOUSE GAS EMISSIONS ABATEMENT POLICY

The current US federal efforts to regulate GHGs follow more than 2 de-
cades of national and international analyses of, deliberations on, and at-
tempts to implement policies to address the long-term risks of global cli-
mate change resulting from human society’s GHG emissions, particularly 
from the production and consumption of fossil fuel sources of energy. 
The first World Climate Conference was held in 1979 under the auspices 
of the World Meteorological Association, and the Intergovernmental 
Panel on Climate Change (IPCC) was established in 1988 to systemati-
cally gather, assess, and disseminate scientific knowledge about climate 
change, including human influences. An international negotiating com-
mittee was convened in 1991, and in 1992 it adopted the United Nations 
Framework Convention on Climate Change (UNFCCC), which called for 
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“stabilization of greenhouse gas concentrations in the atmosphere at a 
level that would prevent dangerous anthropogenic interference with the 
climate system” (1771 U.N.T.S. 107, art. 2). More than 150 countries, 
including the United States, signed the convention in the year following 
its introduction, and it entered into force in 1994.

In 1997, the Kyoto Protocol was adopted as a mechanism for imple-
menting the UNFCCC. The protocol stipulated an international regime 
of GHG emissions reductions and was ultimately endorsed (signed and 
ratified) by nearly 200 countries. The United States signed, but did not 
ratify, the protocol. Since 1997, the IPCC has released its third, fourth, 
and fifth assessment reports, and international meetings and negotiations 
under the umbrella of the UNFCCC have continued. However, coordi-
nated and sustained international action to reduce anthropogenic GHG 
emissions has yet to occur.

The Clinton administration was centrally involved in the development 
of the Kyoto Protocol but failed to secure its ratification by the Senate. 
The issue of climate change was deemphasized by the second Bush ad-
ministration, and Congress engaged in several unsuccessful efforts to de-
velop and pass GHG reduction legislation, including Senate Bill 2191, the 
 Lieberman-Warner Climate Security Act of 2007. There were, however, a 
number of successful state and regional efforts to develop and implement 
large-scale GHG emissions reductions during the early to mid-2000s. 
These included California Assembly Bill 32, the California Global Warm-
ing Solutions Act, passed by the state legislature and signed by Governor 
Arnold Schwarzenegger in 2006. The bill calls for a comprehensive sys-
tem of regulatory and market initiatives to reduce the state’s GHG emis-
sions, notably a cap-and-trade system, which was developed by the state’s 
Air Resources Board and began operating in January 2013.

Climate change and GHG emissions abatement reemerged as national 
priorities during the first Obama administration, which supported House 
of Representatives Bill 2454, the American Clean Energy and Security 
Act of 2009—the Waxman-Markey Bill. This legislation would have es-
tablished a national policy and regulatory system for emissions reduction, 
including a cap-and-trade system. The legislation was approved by the 
House of Representatives but was defeated in the Senate.

In 2006 the EPA issued electric utility generating unit (EGU) pollutant 
standards that did not address CO2 (71 Fed. Reg. 9866 [February 27, 
2006]). Two groups (one a consortium of US states, the other of envi-
ronmental groups) filed petitions for judicial review of this ruling, con-
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tending that it incorrectly omitted CO2 from the standards. In 2007, the 
Supreme Court ruled in Massachusetts v. EPA (549 U.S. 497 [2007]) that 
GHGs are air pollutants under the Clean Air Act (CAA) and that the EPA 
therefore had the authority to regulate their emissions under CAA, sec-
tion 111. Ultimately, the EPA negotiated a settlement with the petitioners 
and undertook development of CO2 regulations, the first of which were 
proposed in March 2012.

The proposed regulations took the form of new source perfor-
mance standards (NSPSs) applying to all new fossil-fuel-fired EGUs of 
greater than 25 megawatt (MW) capacity (77 Fed. Reg. 22,392 [April 
13, 2012]).1 These units would be required to emit no more than 1,000 
pounds of CO2 per megawatt-hour annually. The EPA based this cri-
terion on the emissions profile of natural gas combined-cycle (NGCC) 
power plants.

The EPA’s 2012 regulatory impact analysis (RIA) found that the stan-
dard would be met by current and new NGCC units and in principle by 
coal plants using carbon capture and sequestration technology (although 
this still has yet to be fully developed and demonstrated, much less com-
mercially deployed) (EPA Office of Air Quality Planning and Standards 
2012). The RIA also found that, given current and anticipated market 
conditions and technologies, new fossil-fuel-fired generating capacity 
through 2020 would most likely be NGCC plants. Given that the most 
likely to be installed units are non-fossil-fuel fired—that is, they use re-
newable energy—and would a fortiori meet the standard, the EPA con-
cluded that “technologies planned for new sources currently envisioned 
by owners and operators of EGUs will meet the regulatory requirements 
of this NSPS or are not covered by the NSPS” (EPA 2012, p. ES-3). Thus, 
it was projected that the costs of the regulations, and their effects on elec-
tricity prices, would be nil.

Following the comment period, the EPA withdrew the proposal and 
subsequently issued a revised version that entailed separate standards for 
NGCC plants and other fossil-fuel-fired plants (79 Fed. Reg. 1430 [Janu-
ary 8, 2014]). Finally, in June 2014, the agency proposed a complemen-
tary set of rules for existing power plants that undergo modification or 
reconstruction (79 Fed. Reg. 34,960 [June 18, 2014]). The RIA of the 

1. By way of comparison, in 2011 there were 1,400 coal-fired units in the United 
States with an average capacity of 227 megawatts (MW) and 5,574 natural gas units with 
an average capacity of 74.5 MW (EIA 2013a).
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2014 rules found that while the regulations would result in nonnegligible 
costs, these would be exceeded by their benefits; in 2030, for example, 
net benefits (in 2011 dollars) would range from $46 billion to $82 billion, 
depending on discounting and implementation assumptions (EPA Office 
of Air Quality Planning and Standards 2014).

3. ABOUT THE INTEGRATED PLANNING MODEL

The RIA for electricity-sector cost and energy estimates was developed by 
the EPA using the IPM, a proprietary model developed, maintained, and 
operated for the EPA by a private company, ICF International.2 Its pri-
mary use has been air quality regulation.

The IPM is a detailed, deterministic model of the electric power sec-
tor in the continental United States of the linear programming (LP) type. 
Mathematically, LP models are optimization models in which some objec-
tive is minimized or maximized subject to a system of constraints defining 
the set of feasible options for operating some system. Among theoretical 
and computational approaches to optimization, the defining characteris-
tic of LP models is that both the objective and the constraints are linear 
functions of their inputs. The LP concept originated in the 1930s in the 
work of the Russian mathematician Leonid Kantorovich as an approach 
to implementing central planning. With the advent of broadly accessible 
and affordable computer hardware and software, it has become the most 
widely used form of practical numerical optimization, with applications 
in industry, research, and policy analysis. (The key to this broad adoption 
is the linearity assumption, which has made LP in general considerably 
more tractable than most other forms of optimization, especially in large-
scale applications.)

With time horizons up to the year 2050, the IPM calculates least-cost 
solutions to the problem of running the power system subject to con-
straints describing supply, demand, engineering and technical aspects, 
and costs. The model has about 2 million decision variables, namely, 
variables that are determined in the optimization and on the order of 
200,000 constraints. It contains information about more than 15,000 ex-
isting and planned power plants. In brief, to analyze the CO2 NSPS, the 
IPM was used to compute two solutions to the electric power planning 

2. The use of proprietary models for regulation is an important issue for the evalua-
tion of models but will not be addressed here.
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problem (using a time horizon of 2020), one without the standards and 
one with them, and their accompanying costs, emissions, technology de-
ployment patterns, and other quantities, which were compared to gauge 
the effects of the regulations.

4. EVALUATION OF MODELS IN THE ENVIRONMENTAL PROTECTION AGENCY

Among environmental and energy regulatory agencies, the EPA’s efforts 
to grapple in a sustained and serious way with the problems of validating 
or evaluating computational models are a noteworthy exception. Much 
of this work has been driven by the agency’s Science Advisory Board 
(SAB), established in the late 1970s with a mandate to advise the EPA on 
a range of technical issues, including evaluation of models (see, for ex-
ample, SAB Environmental Engineering Committee 1989; SAB Modeling 
Peer Review Subcommittee 1993; EPA Science Policy Council 1999). Pur-
suant to the SAB’s recommendations, the agency established its Council 
on Regulatory Environmental Modeling in 2000 to “[promote] scientific 
integrity and defensibility in the modeling principles, practices, and guid-
ance which inform environmental and public health regulatory decision- 
making and research applications.”3

Notwithstanding such efforts, a 2007 report of the National Research 
Council (NRC) (NRC Committee on Models 2007) found the EPA’s pro-
cesses and procedures for computational model evaluation lacking. While 
recognizing that the “EPA is a global leader in advancing and using mod-
els in the environmental regulatory decision process,” the NRC stated 
that “the agency has not sufficiently leveraged opportunities to improve 
its regulatory decisions by adopting a comprehensive strategy for period-
ically evaluating and refining its models” (NRC Committee on Models 
2007, p. 1). The NRC provided a review of the underlying issues and de-
lineated a set of guidelines for the agency to follow in this area. The coun-
cil’s perspective was heavily influenced by the views in Oreskes (1998) 
and Oreskes, Shrader-Frechette, and Belitz (1994, p. 641), in which the 
authors argue that “verification and validation of numerical models of 
natural systems is impossible” and advocate instead the goal of “evalu-
ation” of such models. The NRC characterized this as follows: “Model 
evaluation is the process of deciding whether and when a model is suit-

3. See Environmental Protection Agency, Environmental Modeling (http://www.epa 
.gov/crem/index.html).

This content downloaded from 
�������������38.124.35.11 on Fri, 15 May 2020 19:09:39 UTC�������������� 

All use subject to https://about.jstor.org/terms

http://www.epa.gov/crem/index.html
http://www.epa.gov/crem/index.html


S430 /  T H E  J O U R N A L  O F  L E G A L  S T U D I E S  /  V O L U M E  4 4  ( 2 )  /  J U N E  2 0 1 5

able for its intended purpose. This process is not a strict validation or 
verification procedure but is one that builds confidence in model applica-
tions and increases the understanding of model strengths and limitations” 
(NRC Committee on Models 2007, p. 3).

This perspective is reflected in the report’s six core recommendations 
to the EPA. Of these, three address substantive as opposed to process or 
procedural issues: first, describe the model and its intended uses; second, 
describe the relationship of the model to data, including the data for both 
inputs and corroboration; and third, describe how such data and other 
sources of information will be used to assess the ability of the model to 
meet its intended task (NRC Committee on Models 2007, p. 4).

In a 2009 report, the EPA presented guidelines based on the NRC’s 
recommendations. Defining a model as “a simplification of reality that is 
constructed to gain insights into select attributes of a particular physical, 
biological, economic, or social system,” the report notes that “[t]he chal-
lenge facing model developers and users is determining when a model, 
despite its uncertainties, can be appropriately used to inform a decision. 
Model evaluation is the process used to make this determination. . . .  
[M]odel evaluation is defined as the process used to generate information 
to determine whether a model and its analytical results are of a quality 
sufficient to serve as the basis for a decision” (EPA Council for Regula-
tory Environmental Modeling 2009, pp. 45, 19).

The available documentation indicates that the IPM has been sub-
ject to review procedures that, in the view of the EPA and stakeholders, 
have built confidence in the model and confirmed its suitability for use: 
“Quality assurance and verification of code is routinely performed by 
ICF. . . . Model inputs and results are corroborated through extensive 
review and comment by EPA stakeholders. . . . IPM is regularly used in 
comparative modeling exercises. . . . Regularly scheduled peer review 
is performed on key elements and assumptions in EPA’s application of 
IPM” (EPA 2012, p. 5).

The detailed examples of review fully documented by the EPA are two 
2003 workshops on the model’s coal and natural gas supply assumptions. 
These entail extremely detailed expert assessment of the model’s inputs, 
outputs, and processes governing the use of the fuels in the electric power 
system. These assessments did not, however, include any validation 
analysis as this is understood and practiced in scientific and engineering 
computation: some form of systematic, quantitative comparison of the 
 model’s outputs with empirical data.
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5. ENERGY MODELING: HISTORY AND ASPECTS OF CURRENT PRACTICE

Numerical modeling of energy systems emerged in the 1960s and was 
well established by the end of the 1970s. Of particular relevance for the 
present discussion are models based on economic and/or optimization 
principles, designed to analyze policies including energy or environmental 
taxes, technology subsidies, or technology standards. A key example is 
the model created by the Federal Energy Administration for Project Inde-
pendence in 1974 to support the development of a national energy policy 
(Hogan 1975). This model (the Project Independence Evaluation System) 
was of the LP type (like its successor the IPM).

As such models proliferated—reflecting both that era’s focus on en-
ergy issues and the advent of more widely accessible and affordable com-
puter hardware and software—model validation and uncertainty quan-
tification were recognized as critical issues and were given considerable 
attention by both researchers and decision makers. More than 100 entries 
on energy and electric power models are listed in a 1978 bibliography 
on validating computer models in policy analysis and the social sciences 
(Gruhl and Gruhl 1978). In 1979 and 1980, the National Bureau of Stan-
dards held several large, multidisciplinary workshops on validation of en-
ergy models (Gass 1980).

It is fair to say that such efforts raised more questions than they an-
swered, which to a large extent reflects the difficulty of the underlying 
problems. Subsequently, activities of this type were attenuated, particu-
larly with the end of the era of energy crises, as of the mid-1980s. The 
modeling itself, however, continued and over time expanded. Energy 
models have become the dominant analytical tools not only for energy 
policy but for important areas of environmental policy as well, partic-
ularly GHG emissions abatement, as exemplified by the use of the IPM. 
The hallmark of this field is the creation of extremely detailed determinis-
tic models, parameterized through nonstatistical procedures and not for-
mally evaluated or tested as this concept is commonly understood in sci-
entific and engineering circles.

A key factor in the emergence of this paradigm is the rise of calibration 
rather than estimation as a standard modeling practice. This terminology 
refers to the following distinction. In econometrics or statistics, unknown 
model parameters are estimated—that is, assigned numerical values—by 
applying such methods as least squares or maximum likelihood to fit the 
model to data. This approach also quantifies uncertainty intrinsically, as 
it were, by providing various well-defined error estimates such as con-
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fidence intervals. By contrast, calibration refers to assigning parameter 
values in a nonstatistical manner to models that are constructed a priori 
on assumptions based on first principles.4 The calibrationist philosophy 
is discussed by Dawkins, Srinivasan, and Whalley (2001); although fo-
cused on so-called applied (or computable) general equilibrium models 
in economics, their characterization well applies to energy models of the 
economic or optimization type more generally:5 “[M]odellers typically 
see their simulations largely as numerical implementations of theoretical 
structures. To them, the widespread use of a particular structure in the 
theoretical literature is an indication of its worth, so that they seek less 
to test or validate models and more to explore the numerical implications 
of a particular model, conditional on having chosen it. . . . [T]he focus of 
micro modellers is to generate insights about the effects of policy or other 
changes conditional on a particular theoretical structure, rather than to 
test theory itself” (Dawkins, Srinivasan, and Whalley 2001, p. 3672).

This conditionality is not confined to research applications, however; 
it also describes how such models are applied to policy analysis. For such 
applications, the standard experimental design, as it were, is to compute 
a reference or baseline case representing the future trajectory of the sys-
tem in the absence of the policy in question and then a policy case that 
includes the intervention. The interpretation of the results of such cal-
culations of course depends significantly on how one interprets the ref-
erence or baseline case. Modelers are at some pains to deny that such 
cases constitute forecasts or predictions, instead characterizing them as 
projections and emphasizing their conditionality. A representative state-
ment of this stance is provided by the Energy Information Administra-
tion (EIA), which maintains and runs the National Energy Modeling Sys-
tem (NEMS), which is in effect the Department of Energy’s, and thus the 
federal government’s, de facto official model of the national energy sys-
tem: “Projections [generated by NEMS] are not statements of what will 
happen but of what might happen, given the assumptions used for any 
particular scenario. . . . [E]nergy models are simplified representations of 
[the energy system]. Projections are highly dependent on the data, meth-
odologies, model structures, and assumptions used in their development. 

4. It should be noted that the meaning of model calibration varies across disciplines, 
especially between economics and policy analysis, on the one hand, and physical and 
engineering sciences, on the other hand. The characterization given here is specific to the 
former.

5. It is also the case that some energy models are of the numerical general equilibrium 
type.
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[These] projections are subject to much uncertainty. Many . . . events 
that shape energy markets are random and cannot be anticipated. In ad-
dition, future developments in technologies, demographics, and resources 
cannot be foreseen with certainty” (EIA 2010).

This statement is a justified and informative disclaimer. But the ac-
knowledgment of these myriad uncertainties belies the practice of pos-
iting a single baseline or reference case, or at most a very small number 
of the numerous possibilities. Clarke et al. (2007, p. 59) acknowledge, 
in a multimodel study of global GHG stabilization paths, that “[e]ach of 
the modeling groups could have created a range of other plausible refer-
ence scenarios by varying assumptions about rates of economic growth, 
the cost and availability of alternative energy options, assumptions about 
non-climate environmental regulations, and so forth.”

However, calculation of this range of plausible alternatives is ex-
tremely rare.6 As Morgan and Keith (2008) point out, it is difficult to 
avoid the interpretation that modelers are implicitly endorsing their ref-
erence cases as having greater plausibility or likelihood than possible al-
ternatives. Yet there are no clearly articulated concepts of uncertainty or 
validity that might formally support this approach.

Instead, the notion that the models are intended to generate insights, 
not numbers, is a cornerstone of contemporary energy modeling epis-
temology (Peace and Weyant 2008). Defining what constitutes an in-
sight, however, is problematic. A commonly proffered example, of the 
cost-lowering benefits of geographic and temporal flexibility in abating 
GHG emissions, may on the contrary simply reflect the mathematical 
structure of the models in question: enlarging the set of feasible solutions 
of a concave optimization model necessarily results in improvements in 
the optimum.

In fact, the history of energy modeling can instead be interpreted as 
revealing that ever-increasing levels of detail per se are implicitly taken 
as an indicator of increasing verisimilitude or accuracy, despite there be-
ing few if any theoretical or empirical foundations for concluding that 
this is in general an outcome of greater model complexity. Prima facie, 
it might seem obvious that greater detail would indeed yield better accu-
racy. It is important to note, however, that the modelers themselves do 

6. Lempert et al. (2006) develop an approach to integrated assessment of global cli-
mate change based on the computation of combinatorially large numbers of scenarios and 
an analytic framework to interpret them. Their methodology stands in contrast to that of 
almost all other energy and integrated assessment modelers.
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not make this claim as such—the appeal to modeling for insight is in fact 
a disclaimer of sorts in this regard. This stance is consistent with the cali-
brationist position. But one of its consequences is that the modeling com-
munity has not developed concepts of accuracy or validity that could be 
applied to gauge whether or how an increase in detail improves a model.

It is useful to consider in concrete terms the example of modeling the 
electric power system, specifically the inclusion of information about 
thousands of individual power plants in the IPM. Asking whether and 
why the model is more accurate with this level of detail than it would be 
without it allows us to explore the question absent a standard or gener-
ally accepted definition. To begin, including a specific plant means rep-
resenting it in terms of a small number of parameters such as output ca-
pacity, thermal efficiency, and cost. The actual power output of the plant, 
however, is determined in a model such as the IPM by a global optimi-
zation of the entire system: the model operates each plant in such a way 
as to minimize the total system cost of meeting exogenously specified de-
mands. Thus, in contrast to what might be the case with a simulation 
model, the modeled output of the plant would not be expected to cor-
respond to its actual output even in a base year for which this quantity 
may be known—for example, from survey data. In this respect, then, the 
model does not represent the plant accurately, nor is it designed to do so.

These considerations highlight the fact that computation using a 
model such as the IPM is normative, not positive, and thus focus our 
attention on what “accuracy” should mean in a normative context and 
how a high level of detail contributes to its achievement or does not. (The 
optimization assumption can be rationalized positively by appealing to 
mathematical demonstrations of the equivalence of centralized optimiza-
tion and distributed rational behavior under ideal market conditions, but 
this argument is rarely if ever made for electric power modeling, because 
of the general deviation from those conditions.) Given that the basic use 
of the model is determining the least-cost means of operating the system, 
one might argue that including information about a large number of in-
dividual plants gives a better estimate of this cost than would be obtained 
with a less detailed model. This simply shifts the question, however, since 
it is not possible to run the real-world system optimally, in a manner 
corresponding to the model’s representation, in order to study how well 
the outcome is replicated by computational models of varying levels of 
complexity.

It could be argued instead that the primary practical application of the 
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model is to estimate how the cost of operating the system would be af-
fected by potential policy interventions—such as the GHG regulations—
and that this purpose is better served with a higher level of detail. That is, 
the point is to estimate the change, not the actual level. To examine this 
reasoning, consider the following thought experiment. Suppose that the 
model is static—that is, it represents only the present-day system rather 
than the evolution of the system over the next several decades—and is 
being used to analyze some hypothetical policy. If, as expected, the mod-
eled (determined by the optimization) power outputs of individual plants 
do not correspond to their actual outputs in the base or prepolicy case, 
why would the presence of plant-level detail increase confidence that this 
detail improves the modeled response of the system to policy relative to a 
model with less detail?

In reality, the IPM and other models have an intertemporal structure. 
In this setting, the fact that the overall computation represents a scenario 
rather than a forecast or prediction is a reminder of the acknowledged 
conditionality of the exercise. Here, accuracy and validity are not merely 
undefined, they are explicitly disavowed. So the question of what is im-
proved by a greater level of detail in a model becomes even more vex-
ing. Accepting the epistemological principle of modeling for insight, one 
could conjecture that greater detail yields greater insight, but as noted 
above, this term itself is challenging to define.

The intertemporal structure of models such as the IPM highlights an-
other reason to question the value of increased complexity: the impor-
tance of technological change in determining the future evolution of the 
energy system. Technological change in general has proven difficult or 
impossible to predict, but over sufficiently long timescales it is one of 
the primary drivers of energy use. In aggregate models, its effects on a 
large scale can at least be approximated by exogenous parameters that 
extrapolate past trends. In energy modeling, these are analogous to labor 
productivity parameters. Just as the latter capture the trend of increasing 
economic output per unit of labor input over time without representing 
the actual mechanisms underlying this phenomenon, so aggregate energy 
productivity parameters represent, in reduced form, the historically ob-
served trend of increasing energy service output (from the energy indus-
try) per unit of fuel input over time. Although it implicitly treats technical 
innovation as a black box, this approach has the important advantage of 
indirectly incorporating the effects of unanticipated future technical prog-
ress without requiring representation of the details. The modeler must 
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make an assumption about the rate at which it will occur but not exactly 
how it will come about.

But this technique does not apply readily, if at all, when individual 
technology units such as power plants are explicitly represented. In an 
intertemporal model with individually represented existing and planned 
electric power plants (for example), the state of electricity generation 
technology is directly embodied in these units. The model thus implicitly 
locks technology into a combination of its current and anticipated states. 
In other words, it precludes unpredictable innovation. For this reason, if 
it is assumed that technological progress will continue to occur during the 
next several decades, a high degree of technology disaggregation makes 
the model less plausible over this planning horizon than might be the case 
with less detail. The problem of representing technological change in en-
ergy models is discussed further in Section 6.

A complementary issue associated with increasing complexity of the 
model is the possibility that increasing detail per se increases the uncer-
tainty embedded in a model’s output. This risk is suggested by analogy to 
the trade-off between bias and variance in statistics, econometrics, ma-
chine learning, and related disciplines. This term refers to the fact that, 
while accuracy with which a modeled quantity is represented can be im-
proved by increasing a model’s dimensionality or number of parameters, 
beyond a certain point this will necessarily result in greater uncertainty 
in the representation as well. In empirical modeling—that is, when statis-
tical procedures are used to estimate parameters—this phenomenon can 
be explicitly quantified and analyzed. By contrast, the widespread reli-
ance on the deterministic approach and on calibration (rather than esti-
mation) in energy modeling, along with improvements in computational 
hardware and software, has allowed models’ dimensionality to increase 
without formal empirical or theoretical analysis of the degree to which 
uncertainty may be simultaneously increasing.

6. DETAIL AND ACCURACY IN THE INTEGRATED PLANNING MODEL

It was noted above that the IPM has been and continues to be subject to 
reviews and other procedures that reflect the EPA’s philosophy of con-
fidence or credibility building as a key aspect of evaluating models. In 
addition, the high level of electric power system detail in the IPM is em-
phasized in the model’s documentation and in reports on regulatory anal-
yses in which it has been applied. The model illustrates the phenomenon 
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noted in Section 5 of detail per se being claimed as evidence of validity or 
verisimilitude. The following example allows me to explore this hypoth-
esis.

Although never enacted, the Clear Skies legislation, introduced by the 
Bush administration in 2002, would have amended the CAA to establish 
emissions cap-and-trade systems to reduce sulfur dioxide, nitrogen oxide, 
and mercury emissions from electric power plants. Extensive analyses of 
successive versions of the proposed legislation were among the first appli-
cations of the IPM. The 2002 analysis used IPM version 2.1, for which 
(as with successive versions of the model) extensive, multipart documen-
tation was prepared (EPA Clean Air Markets Division 2002).

Model validation and evaluation are mentioned nowhere in this doc-
umentation. However, an ancillary document accompanying the IPM 
output files for the legislative analysis contains the following statement: 
“Projections for individual plants are based on data currently available 
and modeling parameters which are simplifications of the real world. It 
is likely that future actions regarding individual plants will differ from 
model projections of actions; however, the aggregate impacts are ex-
pected to be appropriately characterized by the model” (EPA 2002, p. 1).

This is a highly suggestive characterization of the model’s accuracy 
but is apparently nowhere elaborated on by ICF International or the EPA. 
Precisely which impacts are at issue, and what “appropriately character-
ized” might mean, are left unspecified. For example, are the impacts sim-
ply the future trajectories of the national electricity supply, including the 
fuel mix? Or are they the response of the system to policy interventions? 
Or both? And is it being stated that the model predicts such impacts with 
some sort of empirical accuracy? More important, the statement raises 
the question of how the modelers and the EPA view the relationship be-
tween detail and accuracy in the IPM. One interpretation is that it is be-
ing claimed that the model’s appropriate characterization of aggregate 
impacts is due to the high degree of detail about individual plants and 
that the model will be right on average in a statistical sense. But given 
that the model is completely deterministic and is used to generate only a 
small number of scenarios, the grounds for such a claim are unclear.

In terms of the discussion in Section 5, the implicit claim here may in 
fact be that the high level of detail increases the accuracy of the model in 
a deterministic rather than statistical sense. The justification for such an 
assertion is if anything even less clear than if it is interpreted statistically.

In energy modeling in general, it is in certain cases possible to compare 
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past model-based projections with actual events. For example the EIA 
regularly releases retrospective assessments of NEMS projections that in-
clude discussions of reasons for discrepancies with subsequently observed 
phenomena. It is possible to make such a comparison for the IPM using 
the Clear Skies study of 2002, and this comparison highlights the prob-
lem of assuming that high levels of detail ensure model verisimilitude.

The IPM base case for the Clear Skies 2002 analysis projected that 
electric power CO2 emissions would be 2,317 million metric tons (mmt) 
in 2005 and 2,429 mmt in 2010 (EPA Clean Air Markets Division 2002, 
table 9.3). The EIA reports that actual emissions were 2,454 mmt in 2005 
and 2,313 mmt in 2010, which implies forecast errors of roughly 6 per-
cent in 2005 and 5 percent in 2010 (EIA 2012, table 11.2e). These are 
quite reasonable errors for the forecast intervals involved and might in-
spire confidence in the model’s predictive capability. However, the IPM 
projection for 2012 CO2 emissions is 2,472 mmt,7 while actual emissions 
in that year were 2,048 mmt (EIA 2013b, table 12.6), an error of more 
than 20 percent.

With the exception of the electric power CO2 emissions reduction 
due to the general economic contraction following the financial crisis of 
2008, this is the largest decrease (that is, 2011 to 2012) in these emissions 
since the EIA began collecting the data in 1973. The basic reason for this 
change was the rapid and significant shift from coal to natural gas in the 
electric power sector, due essentially to declines in gas prices resulting 
from technological advances in drilling—specifically, hydraulic fractur-
ing, or fracking. While the magnitude of ultimately recoverable domestic 
natural gas supplies remains uncertain, there are few if any grounds for 
projecting a supply contraction and consequent price increase sufficient 
to reverse this fuel shift. In other words, a technology regime change has 
occurred. In retrospect, the version of the IPM that produced these pro-
jections (which went to 2020), had it been used to analyze CO2 policy, 
would have yielded results based on large and systematic biases in the 
projections starting around halfway to the forecast horizon. It is worth 
noting that the issue here is indeed bias and not high variance; that is, the 
model was not in some sense right on average.

This example can be taken as one of numerous cautionary tales re-
garding technological change and energy modeling. As Parker and Yaco-
bucci (2008, pp. 73, 15) emphasize in a review of model-based analyses 

7. The Integrated Planning Model projections are reported in 5-year time steps; the 
2012 figure is an interpolation.
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of prospective national climate policy (that is, large-scale GHG emissions 
abatement): “[U]nforeseen events (such as technological breakthroughs) 
loom as critical issues which cannot be modeled. . . . [L]ong-term [model- 
generated] cost projections are at best speculative, and should be viewed 
with attentive skepticism.” Furthermore, “The uncertainty about the fu-
ture direction of the basic drivers of greenhouse gas emissions and the 
economy’s responsiveness (economically, technologically, and behav-
iorally) illustrate the inability of models to predict the ultimate macro-
economic costs of reducing greenhouse gases.”

These points highlight the fundamental weakness of the idea that high 
levels of detail promote some form of model validity, particularly in pro-
jecting future paths of the energy system. The complexity of version 2.1 
of the IPM did not enable it to project the single biggest shift in electric 
power CO2 emissions in the past 40 years, nor will it enable the current 
version to project any future such shifts. As argued in Section 5, the com-
plexity may in fact decrease the capacity of the model to capture, even 
in aggregate terms, the overall trajectory of technical change in electric 
power generation relative to models using a very reduced-form represen-
tation of technical change. This is contrary to the assertion by the EPA 
quoted above regarding the IPM’s capability to characterize aggregate 
impacts. There is a basic illusion-of-precision problem embedded in the 
modeling philosophy represented by the IPM.

7. A MODEL UNCERTAINTY PERSPECTIVE

The discussion thus far has focused on single models. However, a broader 
perspective is needed to fully capture the basic uncertainties attendant to 
energy modeling and can be motivated by the results of a multimodel 
study of the potential costs to the US economy of implementing the 
Kyoto Protocol. This study was conducted by Stanford University’s En-
ergy Modeling Forum (EMF), the leading center for structured scenario 
analyses using energy and integrated assessment models, including inter-
comparisons of multiple-model results. The study, conducted in 1999, 
used 11 models analyzing the protocol, including its impact on the United 
States over a 3-decade horizon (to 2020) (Weyant and Hill 1999).

Figure 1 shows the model-by-model marginal cost curves for US com-
pliance with the treaty, in terms of the carbon tax required to meet a 
range of percentage of emissions reductions from each model’s baseline 
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(Fischer and Morgenstern 2006).8 The basic result is that estimated costs 
for full compliance—an approximately 30 percent reduction—vary by a 
factor of five among the models used in the study. This prompted Fischer 
and Morgenstern (2006) to observe that such a degree of uncertainty was 
a substantial impediment to policy makers’ willingness to implement pol-
icy, and the researchers attempted to account for the sources of variation 
in a statistical analysis.

It is critical to note that this uncertainty was manifested after nearly 
3 decades of computational model development, evolution, and applica-
tion in the energy field. There are few indications that there has been 
a reduction in this type of uncertainty in the years since this study was 
conducted. This and similar results in many other studies are evidence of 
fundamental model uncertainty, under which the appropriate underlying 
mathematical description of a system cannot be specified uniquely so that 
more than one such description can be justified, quantified, and used as 
the basis for computational modeling.

Model uncertainty constitutes a basic indeterminacy in the mathemat-
ical and computational representation of systems. It therefore defines lim-

8. Figure 1 (Fischer and Morgenstern [2006], figure 1) shows the abatement percent-
ages and marginal costs derived from four regions and 11 models for two policy scenar-
ios. See Fischer and Morgenstern (2006) for details.

Figure 1. Model predictions of marginal abatement costs for US compliance with the 
Kyoto Protocol.
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its to validation, as this term has been conventionally understood. If the 
state of knowledge in some domain allows for more than one equally 
plausible or defensible model of a phenomenon, then the concept of val-
idation cannot entail a criterion, even implicitly, that a validated model 
is the best representation among candidate models, as is the case, for ex-
ample, in econometric or statistical analysis. But this type of uncertainty 
also has profound implications for more general concepts of model eval-
uation, including the characterizations in the NRC and EPA documents 
discussed previously. If a given model is found, to paraphrase, to be cred-
ible and useful, but other models of the same phenomenon or system also 
meet these criteria, how should the relative validity, verisimilitude, or 
usefulness of any one of the models in decision making be defined and 
measured?

This problem is directly analogous to the issue of ambiguity in decision 
theory. This term refers to situations in which a decision maker is uncer-
tain about which of several probability distributions or models correctly 
describes a given process, system, or set of potential choice outcomes. 
In the energy modeling context, the models are with few exceptions de-
terministic. But in very practical terms, energy and environmental pol-
icy makers and regulators are routinely dealing with multiple, co existing 
models of the energy system that they are essentially compelled to con-
sider as equally plausible but that produce varying decision- relevant out-
puts. The modeling and analytical communities have provided no formal 
or quantitative means of weighing, ranking, or otherwise combining such 
information nor more generally a theoretical framework or practical pro-
cedures for dealing with multiple, equally plausible models.

In the case of the EPA and the IPM, a single model has been estab-
lished as the analytical platform. The evaluation process, such as it is, 
addresses what can be considered elements of internal validity—that is, 
internal consistency, input quality and extent, whether the model cor-
rectly implements its underlying assumptions, and so forth. But as previ-
ously noted, there is no expectation or requirement that the model meet 
some objective standard of verisimilitude—in colloquial terms, that it be 
demonstrated to be right even conditional on its assumptions and inputs. 
Moreover, as Fischer and Morgenstern (2006) and other such studies 
show, it is a given that the same underlying information—such as electric 
power plant detail—that drives the IPM would yield different but equally 
justifiable policy-relevant outputs under different but equally plausible 
modeling assumptions. Thus, by what amounts to institutional and pro-
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cedural design, the model and its regulatory applications also avoid deal-
ing with the fundamental model uncertainty that attends computational 
representations of the energy system.

8. CONCLUSION

A literal reading of the NRC evaluation guidelines, and their implemen-
tation by the EPA, is that they address the utility of models, their credi-
bility in the eyes of regulators and stakeholders, and processes to estab-
lish both, but not validity or verisimilitude as such. In fact, the guidelines 
are based on an epistemology in which validation as it has traditionally 
been understood in physical science and engineering computation is a 
categorically inappropriate concept for complex numerical models. The 
IPM fully reflects this paradigm, which as I have discussed is firmly es-
tablished in computational energy modeling more generally. But here as 
in other cases, the model’s construction, development, and documenta-
tion strongly indicate that the modelers’ and agency’s view is that a high 
degree of detail per se is indicative of verisimilitude, notwithstanding the 
absence of theoretical or empirical grounds for this belief.

The stance of the NRC and now of the EPA is essentially that com-
putational models and their use in regulatory analysis should be viewed 
from a decision-theoretic perspective. This is an entirely appropriate way 
of framing the matter. But neither entity has articulated its position this 
way, nor has it recognized or acknowledged that reliance on a single, ex-
tremely complex deterministic model is at odds with this philosophy. It is 
quite clear that the IPM is primarily being used to generate numbers, not 
insights, much less results that could be used in a formally constructed 
decision-theoretic analysis.

A useful and pragmatic step forward would be to rigorously state and 
analyze the claims made by the EPA, quoted in Section 6, regarding the 
relationship between the IPM’s high level of detail on the one hand and 
its capability for characterizing aggregate impacts on the other hand. 
Such an effort could entail quantitative testing of how plant-level detail 
affects the model’s aggregate response to various policy interventions, es-
pecially with respect to system cost. In principle, a comparison could be 
made to a form of the model with more aggregated technology repre-
sentation. Some type of analysis along these lines is necessary to justify 
claims regarding the accuracy or usefulness of the model that are based, 
even implicitly, on its level of complexity.
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More generally, model uncertainty as described in Section 6 is a form 
of deep uncertainty. Groundbreaking work by macroeconomists has an-
alyzed model uncertainty and decision or policy rules for the modeled 
system that are robust against it (West, Durlauf, and Brock 2003; Brock, 
Durlauf, and West 2007; Hansen and Sargent 2007). In the case of CO2 
emissions abatement, an approach built on the recognition of fundamen-
tal model uncertainty would be a large step toward regulatory modeling 
that reflects the general state of knowledge—and ignorance—that under-
lies our capacity to project the future of the energy system and how it 
might respond to policies. At a minimum, such a paradigm would depart 
from the standard regulatory agency practice—of which the EPA’s use of 
the IPM is but one example—of reliance on single, highly complex mod-
els. Developing and implementing such an approach would require the 
creation of methods suitable for deterministic, high-dimensional energy 
modeling; the optimal control-based techniques of Hansen and Sargent 
(2007) are not directly applicable. Undertaking such an initiative, how-
ever, is not solely a technical modeling problem per se. It would require 
in addition a framework for designing, not just analyzing, regulations 
that take account of the fundamental uncertainties. This is a daunting but 
critical—and ultimately unavoidable—challenge for both researchers and 
regulators.
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