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The pattern of global land use has important implications for 
the world’s food and timber supplies, bioenergy, biodiversity 
and other eco-system services. However, the productivity of 
this resource is critically dependent on the world’s climate, 
as well as investments in, and dissemination of improved 
technology. This creates massive uncertainty about future 
land use requirements which compound the challenge faced 
by individual investors and governments seeking to make 
long term, sometimes irreversible investments in land con-
version and land use. This study assesses how uncertainties 

associated with underlying biophysical processes and tech-
nological change in agriculture affect the optimal profile 
of land use over the next century, taking into account the 
potential irreversibility in these decisions. A novel dynamic 
stochastic model of global land use is developed, in which the 
societal objective function being maximized places value on 
food production, liquid fuels (including bio-fuels), timber 
production, and biodiversity. While the uncertainty in food 
crop yields has anticipated impact, the resulting expansion 
of crop lands and decline in forest lands is relatively small.
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1 Introduction

The allocation of the world’s land resources over the course of the next cen-
tury has become a pressing research question. Continuing population increases,
improving, land-intensive diets among the poorest populations in the world, in-
creasing production of biofuels and rapid urbanization in developing countries
are all competing for land even as the world looks to land resources to supply
more environmental services. The latter include biodiversity and natural lands,
as well as forests and grasslands devoted to carbon sequestration. And all of
this is taking place in the context of faster than expected climate change which
is altering the biophysical environment for land-related activities. This com-
bination of intense competition for land, coupled with highly uncertain future
productivities and valuations of environmental services, gives rise to a significant
problem of decision-making under uncertainty.

The growing significance of global land use allocation issue was not left
unnoticed by the academic community over the recent decade. A large and
rapidly expanding body of interdisciplinary research has emerged, focusing on
major drivers affecting competition for global land use in the long run.1 The
economic analysis on this issue has largely revolved around two rather distinct
strands of literature.

The first strand of economic literature builds on land based integrated assess-
ment models (IAMs) used to evaluate the costs and benefits of greenhouse gas
(GHG) mitigation. These large-scale computational models (see e.g., Paltsev
et al., 2005; Bouwman et al., 2006; Wise and Calvin, 2011) have an important
advantage of detailed geographic and sectoral (particularly, energy sector) cov-
erage, which allow them to capture a broad range of market mediated responses
to changes in demand and supply factors affecting global land use. Because of
these attractive features IAMs have been extensively used to analyze the effect
of energy and climate policies affecting competition between food and biofuels
(Gurgel et al., 2007; Searchinger et al., 2008; Wise et al., 2009), and climate
change impacts on yields and available area in agriculture and forestry sectors
(Parry et al., 2004; Reilly et al., 2007; Hertel et al., 2010c).

However these models are typically either static or ‘backward looking’ in
their recursive-dynamic structure, and therefore have limited ability to address
important intertemporal questions, such as e.g., inter-temporal allocation of
GHG emission flows from land-use through abatement policies, efficiency impli-
cations of carbon taxes and caps, and endogenous depletion of non-renewable
land resources. None of these models explicitly incorporate uncertainty into
the determination of the optimal path of global land use. To the extent that
uncertainty is dealt with, this is only through sensitivity analysis or alternative
scenarios. This ignores the impact of future uncertainty on optimal decision
making. In the case of competition between agriculture and forestry, this fail-
ure to model uncertainty directly could have large implications for the results
given that land use change decisions are typically costly to reverse.

1For an excellent survey of this literature see Hertel (2011).
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The second strand of the economic literature, on the contrary, sacrifices com-
prehensive sectoral representation for more elaborate treatment of intertempo-
ral issues. This literature typically focuses on a particular land-intensive sector,
where intertemporal issues are significant and cannot be ignored. One exam-
ple of this literature is commercial forestry management in the context of un-
certain fire risks and climate mitigation policies (Stavins, 1999; Sohngen and
Mendelsohn, 2003; Richards and Stokes, 2004; Sohngen and Mendelsohn, 2007;
Daigneault et al., 2010). Another example is natural land conservation decisions
under irreversibility from loss of biodiversity and significant option values at-
tached to the future stream of benefits from ecosystem services (Conrad, 1997,
2000; Bulte et al., 2002; Leroux et al., 2009).

In this study, we seek to bridge the gap between these two distinct strands
of economic literatures. Specifically, we aim to assess the optimal path of global
land use over next century, accounting for both sectoral competition for global
land resources and intertemporal decisions under climate and technology uncer-
tainties affecting crop yields and, therefore, also optimal land allocation. While
we have no illusions that the world’s lands will be optimally allocated in the
coming century, this path provides a useful guideline to understanding the im-
pact of uncertain crop yields on a wide range of land use decisions at global
scale. To our knowledge, this is the first study that integrates the decision
making under uncertainty into a multi-sectoral economic model of global land
use.

Our choice of uncertainty focuses on crop yield dynamics over the course of
next century. Along with energy prices, regulatory policies, and technological
change in food, timber and biofuels industries, this is one of four core uncer-
tainties affecting competition for global land use Steinbuks and Hertel (2013).
Quantification of uncertainty in potential crop yields focuses on two most impor-
tant drivers recognized in agronomic and biophysical literatures (Lobell et al.,
2009; Licker et al., 2010; Foley et al., 2011) - the technological progress in agri-
culture and climate change, and its associated impact on crop yields. Both
sources underlying the uncertainty crop yield dynamics are very complex and
hard to quantify. The advances of crop technology are very difficult to predict.
There is a significant uncertainty about the extent to which one can exploit
large and economically significant yield gaps in developing countries. Even less
certain is the path of future innovations in plant breeding. Assessing the impact
of climate change on agricultural yields is also very complicated task. There is a
significant uncertainty in future GHG concentrations and their induced warm-
ing along the long run growth path of the global economy. The impacts of
changes in temperature and precipitation on plant growth and the productivity
of agriculture in different agro-ecological conditions are no more certain.

Our analysis builds on Steinbuks and Hertel (2013), who develop a dynamic,
forward-looking global multi-sectoral partial equilibrium model to compare the
effects of core known uncertainties on the optimal profile for global land use
and land-based GHG emissions over the next century. They find that long-
term uncertainty in energy prices dominates the climate impacts and climate
policy uncertainties emphasized in prior research on global land use. However,
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the modeling approach of Steinbuks and Hertel (2013) has several important
limitations, which we attempt to address in this paper. First, they adopt a very
simplistic approach to quantifying uncertainty in crop yields, focusing on rather
simplistic representation of climate impacts, and ignoring uncertainty in the
evolution of agricultural technology. Second, their model is perfect foresight and
assumes risk-neutral agents, and thus ignores the impact of future uncertainty
on optimal allocation of global land use.

The model we develop is a long-run dynamic stochastic partial equilibrium
framework in which the societal objective function being maximized places value
on food production, liquid fuels (including biofuels), timber production and bio-
diversity. A non-homothetic AIDADS utility function represents model prefer-
ences, and, as society becomes wealthier, places greater value on eco-system
services, and smaller value on additional consumption of food, energy and tim-
ber products. The forestry sector is characterized by multiple forest vintages,
which add considerable computational complexity in the context of this dy-
namic stochastic analysis. To meet the significant computational challenge of
this high-dimensional problem, we use recent state of art methods in parallel
dynamic programming and implement them on a supercomputer.

To quantify the uncertainty in climate impacts on agricultural yields we fol-
low the methodological approach of Rosenzweig et al. (2014). Our estimates are
based on the results from Decision Support System for Agrotechnology Trans-
fer (DSSAT) crop simulation model for four major crops, run globally on a 0.5
degree grid and weighted by agricultural output under different GHG forcing
scenarios using outputs from five different global climate models. Our estimates
of uncertainty in agricultural technology is based on recent agro-economic and
biophysical studies assessing the potential for closing yield gaps and advances
in plant breeding.

The model is solved over the period 2005-2204, with an emphasis on the first
century. The model baseline accurately reflects developments in global land use
over the 10 years that have already transpired, while also incorporating projec-
tions of population, income and demand growth from a variety of international
agencies. We show the results of the perfect foresight model, whereby climate
and technology shocks to crop yields are absent and compare and contrast them
with the results of the dynamic stochastic model, where the uncertainty in crop
yields is brought to the model’s optimization stage. Our model baseline results
suggest that, in the near term decades, there is a significant expansion in the
area dedicated to food crops due to rapid population growth and increasing
demand for food at subsistence level. The expansion in cropland is largely asso-
ciated with a accelerated loss of unmanaged natural forests, whereas managed
forest lands are little changed. In the second half of the coming century slower
population growth, and technology improvements in crop yields and food pro-
cessing result in a smaller demand for crop land. By 2100 cropland area is just
4 percent larger than in 2004. Managed and protected natural forest land areas
grow significantly by the end of the century, reflecting rising real incomes, and
growing demand for timber products and ecosystem services. The results of the
dynamic stochastic analysis are consistent with the expected hypothesis that
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higher crop yields require smaller use of crop land. However, the magnitude
of the change in land use around different paths of the stochastic crop technol-
ogy index is small. The difference between the most optimistic and pessimistic
states of the crop technology index is about 30 million hectares, which is about
2 percent of the total crop land in 2004. The uncertainty in crop technology
has more profound impact on the consumption of food as well as for the first
generation biofuels consumption over the coming century.

2 Analytical Framework

This section develops a dynamic stochastic multi sectoral model for the world’s
land resources over the next century. This model brings together recent strands
of agronomic, economic, and biophysical literature into a single, intertemporally
consistent, analytical framework, at global scale. The model solves for the
dynamic paths of alternative land uses in light of climate and technological
uncertainties, which together maximize global economic welfare.

The model we develop is a discrete dynamic, finite horizon stochastic partial
equilibrium model. Population, labor, physical and human capital, and other
variable inputs are assumed to be exogenous. Total factor productivity and
technological progress in non-land intensive sectors is also predetermined. The
model focuses on the optimal allocation of scarce land across competing uses
across time.

The societal objective function being maximized places value on processed
food, energy services, timber products, eco-system services, and other goods
and services. As the model focuses on the representative agent’s behavior, the
final consumption products are expressed in per-capita terms. Figure 1 shows
full model’s structure. The key model equations are described below, with more
complete information on equations, variables, and parameter values offered in
technical appendix.

2.1 Primary Resources

There are three primary resources in our partial equilibrium model of global
economy: land, liquid fossil fuels, and other goods and services (see bottom
part of Figure 1). The supply of land is fixed and faces competing uses that are
determined endogenously by the model. The flow of liquid fossil fuels evolves
endogenously along their optimal extraction path, accounting for exogenous
discoveries in new fossil fuel reserves. Other primary inputs comprise of variable
inputs, such as labor, capital (both physical and human), and intermediate
materials. The endowment of other primary inputs is exogenous and evolves
along prespecified global economy growth path.

2.1.1 Land

The total land endowment in the model, L, is fixed. Each period of time t there
are three profiles of land in the economy. They include natural forest land -
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which are in an undisturbed state (e.g., parts of the Amazon tropical rainforest
ecosystem), agricultural cropland, LA, and commercially managed forest land,
LC . We ignore residential, retail, and industrial uses of land in this partial
equilibrium model of agriculture and forestry.

We assume that the natural forest land consists of two types. Institution-
ally protected land, LR, includes natural parks, biodiversity reserves and other
types of protected forests. This land is used to produce ecosystem services for
society, and cannot be converted to commercial land. Unmanaged natural land,
LN , can be accessed and either converted to managed land or to protected nat-
ural land. Once the natural land is converted to managed land, its potential to
yield ecosystem services is diminished and cannot be restored within the (sin-
gle century) time frame of the analysis. Thus, the conversion of natural lands
for commercial use is an irreversible decision.2 We denote land transition flows
from unmanaged land to managed agricultural land as ∆N,A, and from unman-
aged land to protected natural land as ∆N,R. The use of managed land can
be shifted between forestry and agriculture. We denote land transition flows
from managed forest land to agricultural land as ∆C,A. Note that the negative
value of ∆C,A implies land transition from agriculture to forestry. Equations
describing allocation of land across time and different uses are as follows:

L =
∑

i=A,C,N,R

Lit, (1)

LNt = LNt+1 −∆N,A
t −∆N,R

t , (2)

LRt+1 = LRt + ∆N,R
t , (3)

LAt+1 = LAt + ∆N,A
t + ∆C,A

t , (4)

and

LCt+1 = LCt −∆C,A
t . (5)

Equation (1) defines the composition of land in the economy. Equation (2)
shows the extraction path of natural land resources and their conversion to
managed or protected natural lands. Equation (3) shows the growth path of
protected natural lands. Equations (4) and (5) describe the transitions between
lands in agriculture and forestry.

Accessing the natural lands comes at cost, cN , associated with building roads
and other infrastructure (Golub et al., 2009). In addition, converting natural

2This point requires additional clarification. The biophysical and ecological literature sug-
gests that restoration of forest structure and plant species takes at least 30–40 years and usu-
ally many more decades (Chazdon, 2008), costs several to ten thousands dollars per hectare
(Nesshöver et al., 2009), and is only partially successful in achieving reference conditions (Be-
nayas et al., 2009). Modeling restoration of biodiversity under these assumptions introduces
greater computational complexity without making significant changes relative to findings pre-
sented in this study.
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land to reserved land entails additional costs, cR, associated with passing legis-
lation to create new natural parks. We assume that these costs are continuous,
monotonically increasing, and strictly convex functions of the share of natu-
ral land previously accessed. There are no additional costs of natural land
conversion to commercial land, as these costs are offset by the revenues from
deforestation.

Managed Forests Managed forests are characterized by vmax vintages of tree
species with vintage ages v = 1, ..., vmax. At the end of period t each hectare of
managed forest land, LCv,t, has an average density of tree vintage age v, with the

initial allocation given and denoted by LCv,0. Each period of time the managed
forest land can be either planted, harvested or simply left to mature. The newly
planted trees occupy ∆C,C hectares of land, and reach the average age of the
first tree vintage next period. The harvested area of tree vintage age v occupies
∆C,H
v hectares of forest land.

The following equations describe land use of managed forests:

LCt =

vmax∑
v=1

LCv,t, (6)

LCv+1,t+1 = LCv,t −∆C,H
v,t , v < vmax − 1 (7)

LCvmax,t+1 = LCvmax,t −∆C,H
vmax,t + LCvmax−1,t −∆C,H

vmax−1,t (8)

LC1,t+1 = ∆C,C
t . (9)

Equation (6) describes the composition of managed forest area across vintages.
Equation (7) illustrates the harvesting dynamics of forest areas with the ages
vmax− 1 and vmax. Equation (9) shows the transition from planted area to new
forest vintage area.

The average planting costs per hectare of newly forest planted, cp, are invari-
ant to scale and are the same across all vintages. Harvesting managed forests
and conversion of harvested forest land to agricultural land is subject to addi-
tional near term adjustment costs, cH .

2.1.2 Fossil Fuels

The initial stock of liquid fossil fuels, XF , is exogenous, and each period of time t
adds a new amount of fossil fuels, ∆F,D, which reflects exogenous technological
progress in fossil fuel exploration.3 The economy extracts fossil fuels, which
have two competing uses in our partial equilibrium model of land-use. A part of
extracted fossil fuels, ∆F,n

t , is converted to fertilizers that are further used in the

agricultural sector. The remaining amount of fossil fuels, ∆F,E
t , is combusted to

3This technological progress comprises of both discoveries on new exploitable oil and gas
fields, as well as development of new technologies for extraction of non-conventional fossil
fuels.
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satisfy the demand for energy services. The following equation describes supply
of fossil fuels:

XF
t+1 = XF

t −∆F,E
t −∆F,n

t + ∆F,D
t . (10)

The cost of fossil fuels, cF , reflects the expenditures on fossil fuels’ extraction,
refining, transportation and distribution, as well the costs associated with emis-
sions control (e.g., Pigovian taxes) in the non-land-based economy.

2.1.3 Other Primary Resources

The initial endowment of all other primary resources in the non-land-based
economy, such as labor, physical and human capital, and materials inputs, XO,
in this model is exogenous, and grows at rate κo,X , which reflects demographic,
macroeconomic, and technology developments. The following equation describes
supply of other primary inputs:

XO
t+1 = κo,XXO

t . (11)

Other primary inputs can be used for production of land based goods and
services or converted to final goods and services in the non-land economy.

2.2 Intermediate Inputs

We analyze five intermediate inputs used in the production land based goods
and services: petroleum products, fertilizers, crops, biofuels, and raw timber
(see middle part of Figure 1). Fossil fuels are refined and converted to either
petroleum products that are further combusted, or to fertilizers that are used
to boost yields in the agricultural sector. Cropland and fertilizers are combined
to grow crops that can be further converted in food or biofuels. The biofuels
substitute imperfectly for liquid fossil fuels in final energy demand. Harvesting
managed forests yields raw timber that is further used in timber processing. The
production function for intermediate inputs can be illustrated by the following
equation

xit = g1

(
∆F,E
t ,∆F,n

t , LAt ,∆
C,H
v,t , g2

(
xjt

))
, i, j = p, n, c, b, w. (12)

Equation 12 implies that production of intermediate inputs involves the com-
bination of primary inputs and other intermediate inputs, where g1 (·) and g2 (·)
denote production functions for intermediate inputs. To preserve space we show
the specific functional forms of g1 (·) and g2 (·) in technical appendix.

The production of intermediate inputs i incurs non land costs, co,i, expressed
as a fraction of other primary resources. We assume these costs are constant
and scale-invariant.

2.3 Final Goods and Services

We consider four land based services that are consumed in the final demand:
services from processed food and timber, energy services, and ecosystem services

9



(see upper part of Figure 1). The processed food and timber are respectively
products of crops’ and raw timber industrial processing. The production of
energy services combines liquid fossil fuels with the biofuels, and the resulting
mix is further combusted. The ecosystem services are the public good to so-
ciety, which captures recreation, biodiversity, and other environmental goods
and services. We also consider other goods and services, which comprise of con-
sumption of other primary inputs not spent on production of land based goods
and services.

2.3.1 Processed Food

Services from processed food, Y f , capture the efficiency gains from technology
improvements in food production, which result in lower requirements for agri-
cultural inputs in final demand.4 The conversion process is represented by the
linear production function:

Y ft = θft
(
xc − xc,b

)
, (13)

where θft is the productivity of the food processing sector, which captures the
technological progress in both direct transformation of crops into edible food,
and the storage, transportation, and distribution of processed food, and xc−xc,b
is the amount of crops that is not converted into biofuels, and processed for
consumption in final demand. We assume that food processing costs, co,f , are
exogenous and scale-invariant.

2.3.2 Energy Services

Biofuels, xb, blend with petroleum products, xp in different proportions5, and
the resulting mix further combusted to satisfy the demand for energy services.
We assume that biofuels and liquid fossil fuels are imperfect substitutes. The
production of energy services, Y et , is given by CES function:

Y et = θet

(
αe
(
xbt
)ρe

+ (1− αe) (xpt )
ρe
) 1
ρe
, (14)

where the parameter θe describes the efficiency of energy production, (i.e., the
amount of energy services provided by one unit of the energy fuel, Sorrell and
Dimitropoulos 2008, p. 639), αe is the value share of biofuels in energy pro-
duction at the benchmark time 0, and ρe = (σe − 1) /σe is a CES function

4For example, technological innovation in food conservation results in fewer losses from
spoilage, and, correspondingly, lower amounts of processed food needed to satisfy the com-
mercial demand for food. Correspondingly, input requirements for agricultural product also
decrease.

5Blends of E10 or less are used in more than twenty countries around the world, led by
the United States, where ethanol represented 10% percent of the U.S. gasoline fuel supply in
2011. Blends from E20 to E25 have been used in Brazil since the late 1970s. E85 is commonly
used in the U.S. and Europe for flexible-fuel vehicles. Hydrous ethanol or E100 is used in
Brazilian neat ethanol vehicles and flex-fuel light vehicles and in hydrous E15 called hE15 for
modern petrol cars in Netherlands.
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parameter proportional to the elasticity of substitution of petroleum products
for biofuels, σe.

2.3.3 Processed Timber

Harvested forest product, xw is processed for consumption in final demand.
Similar to processed food, services from processed timber, Y w, capture the effi-
ciency gains from technology improvements in timber production, which result
in lower requirements for raw timber in final demand.6 The conversion process
is represented by a linear production function:

Y wt = θstx
w
t , (15)

where θs is the productivity of timber processing sector, which captures the
technological progress in both direct transformation of forest product into pro-
cessed timber, and the quality improvements and durability of timber products.
We assume that timber processing costs, co,s, are exogenous and scale-invariant.

2.3.4 Ecosystem Services

It is well known in both economic and ecological literatures that ecosystem ser-
vices are difficult to define, and it is even more difficult to characterize their
production process (National Research Council, 2005). This stems in part from
the fact that there is a significant heterogeneity in ecosystem services (Costanza
et al., 1997; Daily, 1997), which include physical products (e.g., subsistence food
and lumber) environmental services (e.g., pollination and nutrition cycling), and
non-use goods which are valued purely for their continued existence (e.g., some
unobserved biodiversity). In many cases the lack of markets and market prices
impedes the translation from quantities of ecosystem goods and services to their
production values, and requires the application of non-market and experimental
valuation techniques (Bateman et al., 2011). And there are significant differ-
ences in definitions and modeling approaches in the economic and ecological
literatures, which the National Research Council 2005, p.3 refers to “the great-
est challenge for successful valuation of ecosystem services”. While addressing
these limitations is beyond the scope of this study, given their important role
in the evolution of the long run demand for land, we incorporate ecosystem
services, albeit in a stylized fashion, into the global land use model determining
the optimal dynamic path of land-use in the coming century.

We assume that all types of land do contribute to terrestrial ecosystem ser-
vices. The output for ecosystem services, Y r, is given by the following CES
function of different land inputs:

Y rt = θr
[
αA,r

(
LAt
)ρr

+ αC,r
(
LCt
)ρr

+
(
1− αA,r − αC,r

) (
LNt + θRLRt

)ρr] 1
ρr ,

(16)

6For example, technological innovation in durability of timber products results in their less
frequent replacement. Therefore lower amounts of forest product are needed to satisfy the
commercial demand for timber products.
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where the parameter θr describes the production “technology” of ecosystem
services7. The parameters αA,r, αC,r, and 1− αA,r − αC,r are the value shares
of agricultural, managed, and natural forest lands in production of ecosystem
services. The parameter ρr = (σr − 1) /σr is a CES function parameter propor-
tional to the elasticity of substitution of different types of land in production
of ecosystem services, σr. By characterizing the production process of ecosys-
tem services using equation (16) we assume that agricultural, managed forest,
and natural lands substitute imperfectly in production of ecosystem services.
Unmanaged and protected natural land produce the same ecosystem services
(Costanza et al., 1997). However, protected forest lands are more efficient in
delivering many ecosystem services, as they have e.g., better management for
reducing degradation of biodiversity, and better infrastructure for providing
eco-tourism and recreation services (Hocking et al., 2000).

We assume that non-land cost of producing ecosystem services is zero for
agricultural and managed forest land, as production of ecosystem services is not
their primary function. This cost is also zero for unmanaged natural lands. As
regards protected natural lands, we assume that average non-land cost of pro-
ducing ecosystem services (e.g., maintenance and infrastructure expenditures)
per hectare of reserved natural land, co,r, is exogenous and scale-invariant.

2.3.5 Other Final Goods and Services

The amount of other primary resources that is not spent on production of land
based goods and services is converted into other goods and services. These
other goods and services are consumed in final demand. As the the focus of this
model is on utilization of land based resources we introduce the other goods and
services in a very simplified manner. Specifically we assume that production of
other goods and services is a linear function of other primary inputs net of land
based expenditures:

Y ot = θot

[
XO
t − co,c

xct
θct
− co,f Y

f
t

θft
− co,pxpt − co,nxnt − co,bxbt − c

o,w
t ∆C,H

t

−co,sxwt − co,rLRt − cp∆
C,C
t − cNt − cRt − cFt − cHt

]
,

(17)
where the parameter θot is the economy’s total factor productivity. We introduce
no additional cost of producing other goods and services, assuming that it is
reflected in the size of endowment of other primary inputs.

2.4 Preferences

The economy’s total utility of the population, U , is derived from the per capita
consumption of processed food and timber, energy and ecosystem services, and

7We put the term “technology” in quotation terms because, as discussed above, character-
izing “true” production process of ecosystem services is beyond the scope of the paper. Here
we use the term “technology” as a scalar that maps ecological assets to ecosystem services in
reference period 0.
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other goods and services. Following the macro economic literature, we assume
constant relative risk aversion utility,

U(−→yt ) =

(
u
(
−→yt
))1−γ

1− γ
Πt, (18)

where −→yt =
(
yft , y

e
t , y

w
t , y

r
t , y

o
t

)
=
(
Y ft , Y

e
t , Y

w
t , Y

r
t , Y

o
t

)
/Πt is the per capita

consumption bundle, Πt is the economy’s population, and γ is the coefficient
of relative risk aversion, which captures the economy’s attitude to uncertain
events.

The specific functional form for the utility function, u
(
−→yt
)

, is based on im-

plicitly directive additive preferences, AIDADS (Rimmer and Powell, 1996). Our
choice of the utility function is motivated by its several important advantages of
AIDADS preferences over other functional forms underpinning standard models
of consumer demand. First, similar to the well-known AIDS demand system
(Deaton and Muellbauer, 1980) the AIDADS model is flexible in its treatment
of Engel effects, as the model “allows the MBS’ (Marginal Budget Shares) to
vary as a function of total real expenditures” Rimmer and Powell (1996, p.
1614). Second, the AIDADS has global regularity properties, in contrast to the
local properties of AIDS8. This is essential for solution of the model over a wide
range of quantities. A number of studies (Cranfield et al., 2003; Yu et al., 2004)
demonstrated that AIDADS outperforms other popular models of consumer de-
mand in projecting global food demand, which makes it especially well-suited
for the economic modeling of land-use.

The utility function for the AIDADS system is the implicitly directly additive
function (Hanoch, 1975; Rimmer and Powell, 1996):

u(−→yt ) = exp

 ∑
q=f,e,w,r,o

αq + βq exp
(
u(−→yt )

)
1 + exp

(
u(−→yt )

)
 log

(
yqt − yq

) , (19)

where u is the utility level obtained from the consumption of goods or services
q, and the parameters αq and βq define the varying marginal budget shares of
goods and services in the consumers’ total real expenditures. The parameter yq

defines the subsistence level of consumption of goods and services −→y . Equation
19 implies that the consumption of goods and services −→y is always greater than
their subsistence levels. The AIDADS system imposes standard non-negativity
and adding-up restrictions based on the economic theory. These restrictions
ensure that the consumers’ marginal budget shares and minimal consumption
level of goods and services yq are greater or equal to zero, and the sum of
marginal budget shares in total real expenditures does not exceed one.

8One of well-known limitations of the AIDS system is that its budget shares fall outside
[0, 1] interval. This frequently occurs when AIDS is applied to model the demand for staple
food when income growth is large (Yu et al., 2004, p. 102).
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3 Modeling Uncertainty

This section characterizes dynamic uncertainty in agricultural yields over the
coming century and embeds this uncertainty into the model’s optimization stage.
Crop yields are subject to two types of uncertainties: those related to the devel-
opment and dissemination of new technologies, and those related to changes in
the climatic conditions under which the crops are grown. These two sources of
uncertainty are treated separately, although they are both characterized through
the use of combined climate and crop simulation models run over a global grid.
In addition, this section discusses the method for solving this dynamic-stochastic
model of global land use.

3.1 Functional Representation of Uncertainty

We characterize future uncertainty in yields via a crop productivity index, θct .
The first stylized fact about staple grains yields in the agronomic literature is
that they tend to grow linearly, adding constant amount of gain (e.g., ton/ha)
each year. This suggests that the proportional growth rate should fall gradually
over time. However, crop physiology dictates certain biophysical limits to the
rate at which sunlight and soil nutrients can be converted to grain. And there
is some recent agronomic evidence (Cassman et al., 2010; Grassini et al., 2013)
showing that yields appear to be reaching a plateau in some of the world’s most
important cereal-producing countries. Cassman (1999) suggest that average
national yields can be expected to plateau when they reach 70–80% of the
genetic yield potential ceiling. Based on these observations from agronomic
literature we specify the following logistic function determining the evolution of
the crop productivity index over time:

θct =
θcT θ

c
0e
κct

θcT + θc0 (eκct − 1)
, (20)

where θc0 is the value of the crop productivity index in period 0, θcT is the
crop yield potential in the end of the current century, i.e., “the yield an adapted
crop cultivar can achieve when crop management alleviates all abiotic and biotic
stresses through optimal crop and soil management” (Evans and Fischer, 1999),
and κc is the logistic convergence rate to achieving potential crop yields.

Though the initial value of the crop productivity index is known with cer-
tainty, potential crop yields are highly uncertain. We assume that potential crop
yields are subject to technological and climate shocks εi,t, which are uncorre-
lated and independently and identically distributed across time with probability
ps := P (εt = εs), where state s ∈ {1, ..., S} . Specifically, we assume that poten-
tial crop yields can take two states for realization of each shock - the optimistic
(high yield) state, indexed by h, and pessimistic (low yield) state, indexed by
l, i.e., s ∈ {h, l} . Under these assumptions, the probability that, after real-
ization of a technology or climate shock, the potential crop yield takes on the
pessimistic state is pi := P

(
εi,t = εl

)
, wherei ∈ {1, 2}, and the probability that

the potential crop yield takes on an optimistic state is 1− pi. Furthermore, we
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treat these adverse climate and technology shocks as being irreversible “tipping”
events. Therefore, once the pessimistic state is realized it remains in place until
the end of model solution period.

The stochastic transition path of the crop productivity index is given by

θct+1 = (1− J1,t) (1− J2,t)
θc,hhT θc0e

κct

θc,hhT + θc0 (eκct − 1)
+

J1,t (1− J2,t)
θc,lhT θc0e

κct

θc,lhT + θc0 (eκct − 1)
+

(1− J1,t) J2,t
θc,hlT θc0e

κct

θc,hlT + θc0 (eκct − 1)
+ (21)

J1,tJ2,t
θc,llT θc0e

κct

θc,llT + θc0 (eκct − 1)
,

where J1,t and J2,t are two independent discrete Markov chains, each having
two possible values: Ji,t = 0 indicating that shock εi,t did not realize the state l
by time t, and Ji,t = 1 indicating that shock εi,t achieved the state l by time t,
for i = 1, 2, where J1,t represents the climate change tipping and J2,t represents
the technological change tipping. The probability transition matrix of Ji,t from
period t to period t+ 1 is [

1− pi,t pi,t
0 1

]
,

where its (i, j) element is the transition probability from state h to l, and pi,t
is the probability that the state l from the shock εi,t happens in period t.

3.2 Quantifying the Uncertainty in Crop Yields

3.2.1 Uncertainty in Agricultural Technology

As noted previously, we separate technological uncertainty from climate impacts
uncertainty in projecting the future state of crop productivity. Advances in
crop technology are very difficult to predict due to four interconnected factors
(Fischer et al., 2011). First, there is a significant uncertainty about the potential
for exploiting large and economically significant yield gaps (i.e., the differences
between observed and potential crop yields) in developing countries, especially
in sub-Saharan Africa. A second, and closely related point is that it is unclear
how fast available yield enhancing technologies can be adopted at global scale.9

Third, there is a significant variation in developing countries’ institutions and
policies that make markets work better and provide a conducive environment
for agricultural technology adoption.10 Finally, while plant breeders continue

9These technologies include conservation farming approaches based on no-tillage, the ge-
netic modification technology revolution, and information and communication technologies
for more efficient and precise management of modern inputs.

10These best practices include adoption of better risk management, market development,
rural finance, farmers’ organizations and the provision of advisory services to farmers.
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to make steady gains in further advancing crop yields, progress depends on
the level of funding provided for agricultural research. This has proven to be
somewhat volatile, with per capita funding falling in the decades leading up
to the recent food crisis (Alston and Pardey, 2014). The recent food price
rises have stimulated new investments. However, whether this interest will be
sustained remains to be seen. Overall, progress from conventional breeding is
becoming more difficult. Transgenic (genetic modification) technologies have a
proven record of more than a decade of safe and environmentally sound use,
and thus offer huge potential to address critical biotic and abiotic stresses in
the developing world. However, expected yield gains, costs of further developing
these technologies, and the political acceptance of genetically modified foods are
all highly uncertain.

To quantify the extent to which the advances in crop technology can fur-
ther boost agricultural yields over the course of next century, we first need to
assess the magnitude of existing yield gaps at global scale. In a comprehensive
study Lobell et al. (2009) report a significant variation in the ratios of actual
to potential yields for major food crops across the world, ranging from 0.16 for
tropical lowland maize in Sub-Saharan Africa to 0.95 for wheat in Haryana,
India. For the purposes of this study we employ the results of Licker et al.
(2010), who conduct comprehensive yield gap analysis using global crop dataset
of harvested areas and yields for 175 crops on a 0.5◦geographic grid of the planet
for the year 2000. Using these estimates we calculate the global yield gap as
the grid-level output-weighted yield gap of the four most important food crops
(wheat, maize, soybeans, and rice). The resulting estimate suggests that aver-
age yields are 53% of potential yields, which is close to the median of Lobell
et al. (2009) results. As a further robustness check we employ the Decision
Support System for Agrotechnology Transfer (DSSAT) crop simulation model
(Jones et al., 2003), run globally on a 0.5 degree grid in the parallel System for
Integrating Impacts Models and Sectors (pSIMS; Elliott et al. 2014) to simulate
yields of the same four major food crops under best agricultural management
conditions and compare simulated yields to their observed yields. The resulting
yield gap estimates were not substantially different.

In the optimistic state of advances in crop technology we assume that yields
continue to grow linearly throughout the coming century, eliminating the yield
gap by 2100. This high yield scenario rests on the assumption of contin-
ued strong growth in investment in agricultural research and development,
widespread acceptance of GMOs, continuing institutional reforms in developing
countries, and public and private investments in dissemination of new technolo-
gies. The erosion of any one of these component assumptions will likely result
in a slowing of crop technology improvements. And there are some reasons for
pessimism. In a comprehensive statistical analysis of historic crop production
trends Grassini et al. (2013) note that

“despite the increase in investment in agricultural R&D and educa-
tion [...] the relative rate of yield gain for the major food crops has
decreased over time together with evidence of upper yield plateaus
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in some of the most productive domains. For example, investment
in R&D in agriculture in China has increased threefold from 1981
to 2000. However, rates of increase in crop yields in China have re-
mained constant in wheat, decreased by 64% in maize as a relative
rate and are negligible in rice. Likewise, despite a 58% increase in
investment in agricultural R&D in the United States from 1981 to
2000 (sum of public and private sectors), the rate of maize yield gain
has remained strongly linear.”

To capture the possibility of much slower technological improvement in the com-
ing century, we specify a pessimistic scenario in which, rather than closing the
yield gap by 2100, average yields in 2100 are just three-quarters of potential at
that point in time. As previously noted, we then specify a given probability with
which the crop technology index will irreversibly deteriorate from the optimistic
to the pessimistic path.

3.2.2 Uncertainty in Climate Change Impacts

In addition to crop technology uncertainty, there is great uncertainty about the
physical environment in which this technology will be deployed. In particular,
long run changes in both temperature and precipitation are likely to have an
important impact on the productivity of land in agriculture (IPCC, 2014), and
therefore the global pattern of land use. Quantification of the impact of climate
change on agricultural yields requires coming to grips with three interconnected
factors (Alexandratos, 2011). First, there is a significant uncertainty in future
GHG concentrations along the long run growth path of the global economy.
Second, the General Circulation Models (GCMs) developed by climate scien-
tists to translate these uncertain GHG concentrations into climate outcomes
disagree about the spatially disaggregated deviations of temperature and pre-
cipitation from baseline levels. Finally, there is a significant uncertainty in the
biophysical models used to determine how changes in temperature and precip-
itation will affect plant growth and the productivity of agriculture in different
agro-ecological conditions. The impact of climate change on food crop yields
depends critically on their phenological development, which, in turn, depends
on the accumulation of heat units, typically measured as growing degree days
(GDDs). More rapid accumulation of GDDs as a result of the climate change
speeds up phenological development, thereby shortening key growth stages, such
as the grain filling stage, hence reducing potential yields (Long, 1991). How-
ever, raising concentrations of CO2 in the atmosphere results in an increase in
potential yields due to the “CO2 fertilization effect” (Long et al., 2006). Sort-
ing out the relative importance of these effects and achieving more robustness
in evaluating climate impacts on agricultural yields remains an important re-
search question in agronomic and biophysical literatures (Cassman et al., 2010;
Rosenzweig et al., 2014).

To quantify the uncertainty in climate impacts on agricultural yields we fol-
low the approach of Rosenzweig et al. (2014), who have recently conducted a
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Table 1: Changes in Potential Crop Yields by 2100 (t / Ha)

Model / Scenario RCP 2.6F RCP2.6NF RCP 8.5F RCP 8.5NF
GFDL-ESM2M 0,17 -0,16 0,46 -0,72
HadGEM2-ES 0,16 -0,18 -0,27 -1,30
IPSL-CM5A-LR 0,04 -0,29 -0,27 -1,30
MIROC-ESM-CHEM -0,03 -0,34 -0,34 -1,32
NorESM1-M 0,20 -0,12 0,16 -0,92

Notes. F: Fertilization Effect; NF: No Fertilization Effect.
The results are normalized relative to θcT = 8.8.

globally consistent, protocol-based, multimodel climate change assessment for
major crops with explicit characterization of uncertainty. To quantify the range
of uncertainty of climate change impact on potential crop yields we obtained
results from the DSSAT crop simulation model, run globally on a 0.5◦ grid
and weighted by agricultural output of four major food crops (maize, soybeans,
wheat and rice) under most optimistic (RCP2.6) and pessimistic (RCP8.5) Rep-
resentative Concentration Pathways GHG forcing scenarios (Moss et al., 2008)
and alternate assumptions on CO2 fertilization effects over the period between
1971 and 2099. To quantify uncertainty in temperature increases due to cli-
mate change we employ outputs for five global climate models (GCM): GFDL-
ESM2M (Dunne et al., 2013), HadGEM2-ES (Collins et al., 2008), IPSL-CM5A-
LR (Dufresne et al., 2012), MIROC-ESM-CHEM (Watanabe et al., 2011), and
NorESM1-M (Bentsen et al., 2012). For each of the simulations we fit a linear
trend in order to parsimoniously characterize the evolution of crop yields in the
face of climate change over the coming century.

Table 1 summarizes simulation results for four climate scenarios (RCP 2.6
and 8.5 with and without fertilization effects) in 2100, normalized relative to
an assumed yield potential of 8.8 t / Ha. There is a significant heterogeneity in
terms of both direction and magnitude of climate impacts on agricultural yields
across global climate models when the CO2 fertilization effect is considered. For
the most optimistic scenario, RCP2.6 with fertilization effects (RCP2.6F), four
out of five GCMs predict an increase in potential yields, whereas one model
(MIROC-ESM-CHEM), predicts a very small decline in potential yield. In a
scenario of rapid increases in global temperature with CO2 fertilization effects
(RCP8.5F) three out of five GCMs predict a decline in potential yields of compa-
rable magnitude (between 0.27 and 0.34 t / Ha). Another GCM (NorESM1-M)
predicts an increase in potential yields, but to a lesser extent as compared to
scenario RCP2.6F. Only one climate model (GFDL-ESM2M) predicts an in-
crease in potential yields, which is greater than in scenario RCP2.6F. These
results are consistent with recent findings of Rosenzweig et al. (2014), who show
the potential for negative climate impacts on major crops at higher levels of
warming.

The predictions of global climate models become qualitatively more similar
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when CO2 fertilization effects are removed. For a scenario of moderate tem-
perature increases without fertilization effects (RCP2.6NF), all GCMs predict a
moderate decline in potential yields (between 0.12 and 0.34 t / Ha). Three out
of five GCMs predict a decline in potential yields of a comparable magnitude to
scenario RCP8.5F. Finally, for a scenario of rapid temperature increases without
fertilization effects (RCP8.5NF), all GCMs predict a larger decline in potential
yields (between 0.72 and 1.32 t / Ha). These results are consistent with recent
statistical evidence showing that “10 years of climate trend is equivalent to a
setback of roughly 1 year of technology gains” (Lobell et al., 2011, p. 619).

Based on these results we construct 2 states for potential crop yields under
climate scenarios. Under the optimistic state of the world, we observe moderate
temperature increases with significant CO2 fertilization effects (RCP 2.6F cli-
mate scenario), resulting in small increases in crop yields, relative to baseline.
This is the path on which we begin the simulation in 2004. In each period,
there is a distinct probability of irreversibly deteriorating to the pessimistic
state in which more rapid temperature increases and ineffective CO2 fertiliza-
tion (RCP8.5NF climate scenario) result in a significant decline in crop yields
by 2100.

3.2.3 Constructing Stochastic Crop Productivity Index

Having characterized the realizations of crop productivity under alternative
states of the agricultural technology and the climate change, we still need to as-
sign transition probabilities for tipping from the baseline to possible low yields
states to construct the stochastic crop productivity index. As the long term
evolution of both the advances in crop productivity and climate change impacts
are nearly impossible to forecast, we set the one-period probabilities of falling
to pessimistic state p1,t = p2,t = 0.34% for all t, so that the accumulated prob-
ability of each state {hh, lh, hl, ll} is equal by the end of the model solution
period.

Figure 2 shows the expected path of the stochastic crop productivity index,
and the range of all sample paths of this index over the course of next century.
The accumulated probability of both pessimistic states happening is about 25%
by 2200 (8.5% by 2100), and the accumulated probability of at least one of the
pessimistic states happening is about 75% by 2200 (29% by 2100). We view this
as a relatively conservative specification of tipping points.

3.3 Welfare

The objective of the planner is to maximize the total expected welfare, which is
the cumulative expected utility of the population’s consumption of final goods
and services, −→y , discounted at the constant rate δ > 0, and the expected be-
quest value of unmanaged natural forests and managed forests.11 The planner

11We do not consider the bequest value of protected forests, as they cannot be “scrapped”
in our model.
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Figure 2: Stochastic Crop Productivity Index

allocates managed agricultural and forest lands for crop and timber produc-
tion, the scarce fossil fuels and protected natural forests to solve the following
problem:

max
∆,−→y

T−1∑
t=0

δtE
{
U(−→yt )

}
+ δTE

{
Γ
(
LUT , L

C
T

)}
(22)

subject to constraints (1)-(19), where Γ is the scrap value function and ∆ repre-
sents the change of land and fossile fuel, i.e., ∆N,A,∆N,R,∆C,A,∆C,H ,∆C,C ,∆F,E ,∆F,n.

3.4 Method of Solution

The dynamic programming formulation of the model is the following Bellman
equation Bellman (1957):

Vt
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c
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)}
, (23)

subject to constraints (1)-(19), for t < T . The terminal value function VT = Γ
is given by computing the discounted summation of payoffs with fixed control
policies over the period [T + 1, T + 200], for each possible terminal state vector(
LNT , L

A
T , L

R
T , L

C
T , X

F
T , θ

c
T

)
. Here LC represents the vmax dimensioanl vector of

the managed forest land of all vintage ages.
We solve the stochastic problem by numerical dynamic programming algo-

rithms with value function iteration (Cai and Judd (2010)). Since this is a
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high-dimensional problem containing one discrete state θc and (vmax + 4) con-
tinuous state vector,

(
LN , LA, LR, LC , XF

)
, we apply the parallel value function

iteration method (Cai et al. (2013)) in a supercomputer for solving it. More dis-
cussion of numerical dynamic programming is given in the technical appendix.

4 Model Results

This section describes the results of the impact of crop yield uncertainty on the
optimal path of global land use based on dynamic stochastic model simulations.
We solve the model over the period 2005 - 2204, and present the results for the
first 100 years to minimize the effect of terminal period conditions on our analy-
sis. We first present the results of the perfect foresight model, where the optimal
land allocation decisions are made based on the values of crop productivity in-
dex in the absence of climate and technology shocks. This deterministic analysis
is a useful reference point for further discussion when the uncertainty in food
crop yields is introduced. We then present the results of the dynamic stochastic
model, where the impact of the intrinsic climate and technology uncertainty is
brought into the model optimization stage. Specifically, we use equation 23 to
generate 1000 sample paths of optimal global land use under different realiza-
tions of the stochastic crop productivity index. The results are presented as the
difference between the stochastic path and deterministic reference solution.

4.1 Optimal Path of Global Land Use under Climate and
Technology Uncertainty

Figure 3 depicts the optimal allocation of global land-use, over the course of
next century. The left-hand side of figure 3 shows the model baseline path of
different types of land considered in this study when the food crop yields are are
perfectly anticipated (no uncertainty). The right-hand side of figure 3 shows the
difference range between the model deterministic baseline path and alternative
paths corresponding to different realizations of the stochastic crop productivity
index.

Beginning with the upper panel of Figure 3, we see that, in the near term
decades, area dedicated to food crops increases by 200 million hectares or 13
percent compared to 2004, reaching its maximum of 1.73 billion hectares around
2040. Continuing population growth and increasing demand for food stemming
from economic growth are the key drivers for this cropland expansion. In the
second half of the coming century, slower population growth, and technology
improvements in crop yields and food processing result in a smaller demand
for cropland. By 2100 cropland area declines to 1.59 billion hectares, which is
just 4 percent larger than in 2004. Uncertainty in the crop productivity index
results in additional land conversion aimed at offsetting the impact of potentially
lower yields. However, the magnitude of this cropland use effect is relatively
small. Along the most extreme paths of the stochastic crop productivity index,
which imply rapid realizations of climate and technology shocks, the difference
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relative to the baseline land use path is about 30 million hectares, which is about
2 percent of the total crop land in 2004. The difference declines rapidly as the
likelihood of climate and technology shocks diminishes.
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Figure 3: Optimal Global Land Use Path under Perfect Foresight of Crop Pro-
ductivity

The expansion in cropland is associated with significant losses in unmanaged
natural land (panel b), which declines by 220 million hectares (or by 9 percent
compared to 2004) around 2040. Managed forest area declines by a small amount
in near decades and then increases, returning to its 2004 levels by mid-century
(panel c). In the second half of the coming century growing demand for timber
products results in a stronger growth in managed forest land. Managed forest
area increases to 1.75 billion hectares by the end of the century, which is 8 per-
cent larger than in 2004. Unmanaged forest area continues to decline, although
at slower pace in the second half of the century, falling to 2.11 billion hectares,
which is 18 percent small than in 2004. The decline in unmanaged forest land
is less environmentally damaging in the second half of the coming century, as
deforestation does not occur, and most of that land is converted to managed
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or protected forest land. Uncertainty in crop productivity index is associated
with near identical developments in the optimal paths of managed forest and
unmanaged natural forest lands (panels b and c). Each type of land declines
around the pessimistic realizations of the stochastic crop productivity index,
accounting for about 50 percent in variation of the crop land use.

Protected forest area grows moderately in near decades adding 50 million
hectares by mid century (panel d). In the second part of the coming century,
demand for ecosystem services grows strongly, resulting in a considerable ex-
pansion of protected natural land areas. By 2100 protected natural forest area
reaches 0.37 billion hectares, which is 85 percent larger than in 2004. The
optimal path of protected natural land under climate and crop productivity
uncertainty is little changed.

4.2 Optimal Path of Land Based Goods and Services un-
der Climate and Technology Uncertainty

Figure 4 presents the optimal path of land based goods and services. The left-
hand side of figure 4 shows the model baseline path of different types of land
based goods and services when the food crop yields are perfectly anticipated.
The right-hand side of figure 4 shows the difference range between the model
deterministic baseline path and alternative paths corresponding to different re-
alizations of the stochastic crop productivity index.

The upper panel of Figure 4 shows optimal path of food crops, which in-
creases steadily in the first half of the coming century. Compared to 2004,
production of food crops increases by more than 2 billion tons or 32 percent,
reaching its maximum of 9 billion tons around 2045. As with cropland expansion
rapid population growth and increasing demand for food at subsistence level are
the key drivers for growing consumption on the demand side. On the supply
side, the increase in production of food crops is further boosted by growing
crop yields. In the second half of the coming century, production of food crops
moderates, as consumers satiate their food requirements and the technology of
food marketing and processing improves. By 2100 crop production for food-
stuffs declines to 7.8 billion tons, which is just 13 percent larger than in 2004.
Uncertainty in crop productivity index has a strong effect on the optimal path
of food crops. Along the most extreme paths of the stochastic crop productivity
index, the production of food crops is about 2.6 billion tons less compared to
the deterministic path of the stochastic crop productivity index. This is a large
change indeed, and suggests higher levels of malnutrition in 2100. Almost all
of the variation in the optimal path of food crops comes on the demand side.
As shown above the supply response is small along the extensive margin. In
the technical appendix (Figure D.1, panel a) we show that the supply response
on the intensive margin is even smaller, with the ratio of fertilizers to cropland
increasing by less than one percent under extreme realizations of climate and
technology uncertainty. This result indicates that uncertainty in crop produc-
tivity has a profound impact on demand for food over the coming century, and
potentially has strong and negative welfare implications (Hertel et al., 2010c).

24



a)

2010 2020 2030 2040 2050 2060 2070 2080 2090

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

Year

Food Crops (billion tons)

Year

bi
lli

on
 to

ns

Difference between Stochastic and Deterministic Solutions

 

 

2010 2020 2030 2040 2050 2060 2070 2080 2090
−2

−1.5

−1

−0.5

0

0.5

Range of all sample paths
10% quantile
25% quantile
50% quantile

b)

2010 2020 2030 2040 2050 2060 2070 2080 2090

10

20

30

40

50

60

Year

Biofuels (million tonnes of oil equivalent)

Year

m
ill

io
n 

to
nn

es
 o

f o
il 

eq
ui

va
le

nt

Difference between Stochastic and Deterministic Solutions

 

 

2010 2020 2030 2040 2050 2060 2070 2080 2090

−40

−35

−30

−25

−20

−15

−10

−5

0

Range of all sample paths

10% quantile

25% quantile

50% quantile

25



c)

2010 2020 2030 2040 2050 2060 2070 2080 2090

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

Year

Timber (billion tons)

Year

m
ill

io
n 

to
ns

Difference between Stochastic and Deterministic Solutions

 

 

2010 2020 2030 2040 2050 2060 2070 2080 2090

−50

−40

−30

−20

−10

0

Range of all sample paths

10% quantile

25% quantile

50% quantile

d)

2010 2020 2030 2040 2050 2060 2070 2080 2090

1.95

2

2.05

2.1

2.15

2.2

2.25

Year

Output of Ecosystem Services (billion of 2004 US dollars)

Year

m
ill

io
n 

of
 2

00
4 

U
S

 d
ol

la
rs

Difference between Stochastic and Deterministic Solutions

 

 

2010 2020 2030 2040 2050 2060 2070 2080 2090

−6

−5

−4

−3

−2

−1

0

Range of all sample paths

10% quantile

25% quantile

50% quantile
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The production of first generation biofuels grows as oil becomes more scarce
along the baseline path and agricultural yields increase (panel b). However,
along this optimal path, first generation biofuels still do not become a large
source of energy consumption. In 2100 the production of first generation bio-
fuels is 55 Mtoe, considerably higher than in 2004, but still small in relative
terms (less than 1.5% of total liquid fuel consumption: see technical appendix,
Figure D.1, panel b). Nonetheless, uncertainty in food crop yields has impor-
tant implications for the first generation biofuels. The difference between the
most optimistic and pessimistic states of the crop productivity index is about
35 million tons of oil equivalent, which is a large fraction (63 percent) of their
expected consumption in 2100.

The production of raw timber expands with growing demand for timber
products and further improvements in forest yields (panel c). By 2100, pro-
duction of merchantable timber crops reaches to 6.2 billion tons, which is 46
percent larger than in 2004. The consumption of ecosystem services declines
in the near decades as unmanaged natural forest lands are converted to crop
lands (panel d). It then increases throughout the remaining part of the coming
century as the demand for ecosystem services increases and more natural for-
est lands become institutionally protected. By 2100 consumption of ecosystem
services is 18 percent larger than in 2004. Crop productivity uncertainty has
very small impact on the consumption of merchantable timber and ecosystem
services (panels c and d).

5 Conclusions

The pattern of global land use has important implications for the world’s food
and timber supplies, bioenergy, biodiversity and other eco-system services. How-
ever, the productivity of this resource is critically dependent on the world’s
climate, as well as investments in, and dissemination of improved technology.
This creates massive uncertainty about future land use requirements which com-
pound the challenge faced by individual investors and governments seeking to
make long term, sometimes irreversible investments in land conversion and land
use. In this paper, we assess how the uncertainties associated with the under-
lying biophysical processes and technological change in agriculture affect the
optimal profile of land use over the next century. To do so, we develop is a
long-run dynamic stochastic partial equilibrium model, which brings together
distinct strands of economic, agronomic, and biophysical literature and incor-
porates key drivers affecting global land-use, and solve it using recent state of
art methods in parallel dynamic programming.

To quantify the uncertainty in climate impacts on agricultural yields, we
use the results from the Decision Support System for Agrotechnology Transfer
(DSSAT) crop simulation model for four major crops, run globally on a 0.5
degree grid and weighted by agricultural output under different GHG forcing
scenarios using outputs from five different global climate models. Our estimates
of uncertainty in agricultural technology are based on recent agro-economic
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and biophysical studies assessing the potential for closing yield gaps as well as
attaining further advances in potential yields through plant breeding.

We solve the model over the period 2005-2204, with an emphasis on the first
century. The model baseline accurately reflects developments in global land use
over the 10 years that have already transpired, while also incorporating projec-
tions of population, income and demand growth from a variety of international
agencies. The results of the perfect foresight model, based on expected realiza-
tions of climate and technological impacts on crop yields, predict a significant
expansion in the area dedicated to food crops due to rapid population growth
and increasing per capita demand for food at lower income levels. This expan-
sion results in significant losses of unmanaged natural forests, while managed
forest lands are little changed. This trend is reversed in the second half of the
coming century due to slower population growth, and technology improvements
in crop yields and food processing. The resulting crop land expansion is modest
by 2100. Rising real incomes, and growing demand for timber products and
ecosystem services bring a significant expansion in managed and protected nat-
ural forest land areas, which grow significantly by the end of the century. When
we factor in the potential for future tipping points in agricultural productiv-
ity, due either to adverse climate impacts or barriers to further technological
progress, we find relatively modest increases in cropland amounting to roughly
two percent of current cropland area (30 Mha) by 2100.
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Technical Appendix

A.1 Model Equations, Variables and Parameters

Equations

Land Use

L =
∑

i=A,C,N,R

Lit (A.1)

LNt = LNt+1 −∆N,A
t −∆N,R

t (A.2)

LRt+1 = LRt + ∆N,R
t (A.3)

LAt+1 = LAt + ∆N,A
t + ∆C,A

t (A.4)

LCt+1 = LCt −∆C,A
t (A.5)

LCt =

vmax∑
v=1

LCv,t (A.6)

LCv+1,t+1 = LCv,t −∆C,H
v,t , v < vmax − 1 (A.7)

LCvmax,t+1 = LCvmax,t −∆C,H
vmax,t + LCvmax−1,t −∆C,H

vmax−1,t (A.8)

LC1,t+1 = ∆C,C
t (A.9)

Fossil Fuels

XF
t+1 = XF

t −∆F,E
t −∆F,n

t + ∆F,D
t (A.10)

Other Primary Resources

XO
t+1 = κo,XXO

t (A.11)

Intermediate Products

xpt = θpt∆F,E
t (A.12)

xnt = θn∆F,n
t (A.13)
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xct = θct

(
αn
(
LAt
)ρn

+ (1− αn) (xnt )
ρn
) 1
ρn

(A.14)

xbt = θbxc,bt (A.15)

xwt =

vmax∑
v=1

θwv,t∆
C,H
v,t (A.16)

Final Goods and Services

Y ft = θft
(
xc − xc,b

)
(A.17)

Y et = θet

(
αe
(
xbt
)ρe

+ (1− αe) (xpt )
ρe
) 1
ρe

(A.18)

Y wt = θstx
w
t (A.19)

Y rt = θr

[
αA,r

(
LAt
)ρr

+ αC,r
(
LCt
)ρr

+
(
1− αA,r − αC,r

) (
LNt + θRLRt

)ρr
] 1
ρr

(A.20)

Y ot = θot


XO
t − co,c

xct
θct
− co,f Y

f
t

θft
− co,pxpt − co,nxnt

−co,bxbt − c
o,w
t ∆C,H

t − co,sxwt − co,rLRt
−cp∆C,C

t − cNt − cRt − cFt − cHt

 (A.21)

Technology

θct =
θcT θ

c
0e
κct

θcT + θc0 (eκct − 1)
(A.22)

θwv,t =

0.00001 if v ≤ v

θ
w

v (1 + κwv t) if v > v
, θ
w

v = exp

(
ψa −

ψb
(v − v)

)
(A.23)

θit = θi0(1 + κi)t, i = f, e, s, o (A.24)

Costs

cNt = ξn0

(
∆N,A
t + ∆N,R

t

)
+ ξn1

(
∆N,A
t + ∆N,R

t

)2
(A.25)

cRt = ξR0 ∆N,R
t + ξR1

(
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(A.26)
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cFt = ξP1
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∆F,E
t + ∆F,n

t

)2(XF
0 + ∆F,D

XF
t + ∆F,D

)
(A.27)

cHt = ξH1
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∆C,H
t −∆C,C

t

)2
+
∑
v

ξH2
LCv,t+1 + ξH2

(A.28)

Preferences

U(−→yt ) =
(u (−→yt ))

1−γ

1− γ
Πt,

−→yt =
(
Y ft , Y

e
t , Y

w
t , Y

r
t , Y

o
t

)
/Πt (A.29)

u(−→yt ) = exp

 ∑
q=f,e,w,r,o

(
αq + βq exp (u(−→yt ))

1 + exp (u(−→yt ))

)
log
(
yqt − yq

) (A.30)

Population

Πt =
ΠTΠ0e

κπt

ΠT + Π0 (eκπt − 1)
(A.31)

Welfare

Ω =

T−1∑
t=0

δtE {U(−→yt )}+ δTE
{

Γ
(
LUT , L

C
T

)}
. (A.32)
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Table A.1: Model Exogenous Variables

Parameter Description Units

Exogenous Variables

∆F,D
t Flow of Newly Discovered Fossil Fuels trillion toe

XO
t Other Primary Goods trillion USD

θct Crop Productivity Index tons per Ha
θwv,t Logging Productivity Index tons per Ha

θft Food Processing Productivity Index
θet Energy E�ciency Index
θst Wood Processing Productivity Index
θot Total Factor Productivity Index
CNt Natural Land Access Cost share of XO

t

CRt Natural Land Protection Cost share of XO
t

CHt Managed Forest Conversion Cost share of XO
t

CFt Fossil Fuel Extraction Cost share of XO
t

Πt Population billion people
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Table A.2: Model Endogenous Variables

Parameter Description Units

LAt Agricultural Land Area GHa
LCt Commercial Forest Land Area GHa
LNt Unmanaged Natural Lands GHa

∆LN,At Flow of Deforested Natural Lands GHa
LRt Protected Natural Lands GHa

∆LN,Rt Flow of Protected Natural Lands GHa

∆LC,At Flow of Managed Forest Land to Agriculture GHa

∆LC,Ct Replanted Forest Land Area GHa

∆LC,Hv,t Harvested Forest Land Area of Vintage v GHa
XF
t Stock of Fossil Fuels Ttoe

∆F,E
t Flow of Fossil Fuels Converted to Petroleum Ttoe

∆F,n
t Flow of Fossil Fuels Converted to Fertilizers Ttoe

xpt Petroleum Products Gtoe
xnt Fertlizers Gton
xct Food Crops Gton
xbt Biofuels Gtoe
xwt Raw Timber Gton

Y ft Services from Processed Food billion USD
Y et Energy Services billion USD
Y wt Services from Processed Timber billion USD
Y rt Eco-system Services billion USD
Y ot Other Goods and Services trillion USD

5



Table A.3: Baseline Parameters

Parameter Description Units Value

Population

Π0 Population in 2004 billion people 6.39
ΠT Population in time T billion people 10.1
κπ Population Convergence Rate 0.042

Land Use

L Total Land Area billion Ha 5.83
LA0 Area of Agricultural Land in 2004 billion Ha 1.53
LC0 Area of Commercial Forest Land in 2004 billion Ha 1.62
LN0 Area of Unmanaged Natural Land in 2004 billion Ha 2.47
LR0 Area of Protected Natural Land in 2004 billion Ha 0.207
ξn0 Access Cost Function Parameter 0.216
ξn1 Access Cost Function Parameter 43
ξR0 Protection Cost Function Parameter 2.43
ξR1 Protection Cost Function Parameter 215.7

Fossil Fuels

XF
0 Endowment of Fossil fuels in 2004 trillion toe 0.343

∆F,D Flow of Newly Discovered Fossil Fuels trillion toe 0.008
ξP1 Fuel Extraction Cost Function Parameter 1079

Other Primary Goods

XO
0 Endowment of Other Primary Goods in 2004 USD × 1013 3.274

κo,X Growth Rate of Other Primary Goods Billion ton 0.0035

Intermediate Products

θp Petroleum Conversion Factor Gtoe / Ttoe 500
co,p Petroleum Conversion Cost share of XO

t 0.0023
θn Fertilizer Conversion Factor Gton / Ttoe 1071
co,n Fertilizer Conversion Cost share of XO

t 0.073
θb Biofuels Conversion Rate toe/ton 0.283
co,b Biofuels Conversion Cost share of XO

t 0.001
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Table A.3: Baseline Parameters (continued)

Parameter Description Units Value

an Share of Agricultural Land in CES function 0.55
ρn CES Parameter for Agricultural Land and

Fertilizers
0.123

θc0 Crop Technology Index in 2004 tons per Ha 4.89
θcT Crop Technology Index in 2100 tons per Ha 8.8
κc Convergence Rate of Crop Technology Index 0.025
co,c Crop Breeding Cost share of XO

t 0.0069
ψa Merchantable Timber Yield Parameter 1 6.58
ψb Merchantable Timber Yield Parameter 2 76.5
v Minimum Age for Merchantable Timber Years 11
κwv Timber Yield Gains of Vintage v Share of Yield 0 0.011
cp Forest Planting Cost share of XO

t 0.00005
co,w Forest Harvesting Cost share of XO

t 0.0012
ξH1 Forest Conversion Adjustment Cost Parameter 43
ξH2 Forest Conversion Adjustment Cost Parameter 0.0005

Final Goods and Services

θf0 Food Processing Technology Index in 2004 1.5
κf Food Processing Technology Index Growth

Rate
0.0225

co,f Food Processing Cost share of XO
t 0.0043

θe0 Energy E�ciency Index in 2004 1.195
κe Energy E�ciency Index Growth Rate 0.0225
ρe CES Parameter for Drop-in Fuels and 1G

Biofuels
0.5

αe Share of Biofuels in CES Function 0.09
θs0 Timber Processing Technology Index in 2004 1.52
κs Timber Processing Technology Growth Rate 0.0225
co,s Timber Processing Cost share of XO

t 0.0626
θr Ecosystem Services Technology Index 0.64
αC,r Share of Agricultural Land in CES Function 0.07
αF,r Share of Managed Forest Lands in CES

Function
0.34

ρr CES Parameter for Ecosystem Services 0.123
θR E�ectiveness Index of Protected Lands 10
co,r Cost of Ecosystem Services share of XO

t 0.0020
θo0 Total factor Productivity Index in 2004 1.854
κo Total Factor Index Growth Rate 0.0225
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Table A.3: Baseline Parameters (continued)

Parameter Description Units Value

Preferences and Welfare

αf AIDADS Marginal Budget Share at Subsistence
Income for Services from Processed Food

0.2

αe AIDADS Marginal Budget Share at Subsistence
Income for Energy Services

0.13

αw AIDADS Marginal Budget Share at Subsistence
Income for Services from Processed Timber

0.136

αr AIDADS Marginal Budget Share at Subsistence
Income for Ecosystem Services

0.012

αo AIDADS Marginal Budget Share at Subsistence
Income for Other Goods and Services

0.522

βf AIDADS Marginal Budget Share at High
Income for Services from Processed Food

0.034

βe AIDADS Marginal Budget Share at High
Income for Energy Services

0.065

βw AIDADS Marginal Budget Share at High
Income for Services from Processed Timber

0.092

βr AIDADS Marginal Budget Share at High
Income for Ecosystem Services

0.042

βo AIDADS Marginal Budget Share at High
Income for Other Goods and Services

0.767

γg AIDADS Subsistence Parameter for Processed
Grain Products

0.1

γe AIDADS Subsistence Parameter for Energy
Services

0.01

γw AIDADS Subsistence Parameter for Processed
Timber Products

0.1

γr AIDADS Subsistence Parameter for Ecosystem
Services

0.1

γo AIDADS Subsistence Parameter For Other
Goods and Services

0.1

γ Risk Aversion Parameter 2
δ Social Discount Rate 0.95
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B.1 Baseline Construction

The model baseline extends for a period of 200 years, with an emphasis on the

�rst century, and the starting point being the world economy in 2004. It is

consistent with the IPCC (2000) A1B climate change scenario's storyline that

describes a future world of strong economic growth, global population that grows

quickly until mid-century and slows thereafter, the rapid introduction of new

and more e�cient technologies, and balanced energy use across all sources. It

also foresees that, as the economy grows, its economic structure changes to-

ward a service economy, including the expansion of ecosystem services sector.

The majority of model's baseline parameters are based on the Global Trade

Analysis Project (GTAP) v.7 data base (Hertel 1997, Narayanan and Walmsley

2008) and its satellite data for land use and global climate change policy (Hertel

et al. 2009). The values of other model parameters come from variety of the

international or government agencies (United Nations, FAO, U.S. Energy In-

formation Administration) and economic, agronomic and environmental science

literatures. The values of baseline parameters are summarized in Table A.3 and

Figure B.1.

B.1.1 Primary Resources

B.1.1.1 Land

The data for land endowments come from the GTAP Integrated Global Land

Use Data Base (Lee et al. 2009) and GTAP Global Forestry Data Base (Sohn-

gen et al. 2009b). We de�ne the managed lands as the sum of crop land and

accessible forest land areas. The natural land is de�ned as inaccessible forest

land. Other land areas, such as built-up lands, pastures, grasslands, savannah,

shrublands, desserts, and barren lands, are not included in the current version

of the model. The data for initial allocation of unmanaged natural lands come

from Antoine et al. (2008, p.8, Table 3).

We assume that marginal access cost per hectare, cNt , is a quadratic function

of converted natural land:

cNt = ξn0

(
∆N,A
t + ∆N,R

t

)
+ ξn1

(
∆N,A
t + ∆N,R

t

)2
. (B.1)

In equation (B.1), the parameter ξn0 determines the long-run natural land

access costs with respect to accessed hectares. The parameter ξn2 governs the size
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Figure B.1: Projections of Exogenous Variables, 2005-2104
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of the short-term adjustment costs. Natural land protection costs per hectare

are also assumed a quadratic function of protected natural land:

cRt = ξR0 ∆N,R
t + ξR1

(
∆N,R
t

)2
. (B.2)

In equation (B.2), the parameter ξR0 determines the long-run costs of pro-

tecting land. The parameter ξR1 captures the short-term adjustment costs. The

parameter values de�ning natural land access cost function (B.1), and natural

land protection cost function (B.2) are calibrated based on FAO (2010) data to

match deforestation rates in 2004 and ensure stable rates of natural land access

and protection.

Managed forests

We set the number of forest tree vintages to 50 and assume that average den-

sities of managed forest land corresponding to di�erent tree ages are uniformly

distributed.

B.1.1.2 Fossil Fuels

The primary fossil fuels linked to the economic analysis of land use are petroleum

products and natural gas. Biofuels substitute for petroleum products and, to

lesser extent, natural gas, in energy demand for transportation services. The

natural gas is also the key input in nitrogen fertilizers' production. To deter-

mine the amount of newly discovered oil and gas reserves, ∆F,D
t we estimate

di�erent econometric speci�cations based on historical data from the BP Sta-

tistical Review of World Energy database (2013)1 globally over the period of

1980 - 2010. We �nd that newly discovered oil and gas reserves exhibit a linear

trend, adding a constant amount across time, i.e., ∆F,D
t = ∆F,D.

As petroleum products' and natural gas prices are closely related in the long

run (Hartley et al. 2008), we use the same cost function for both types of fossil

fuels. Speci�cally, we assume that the cost of fossil fuels is a nonlinear quadratic

function with accelerating costs as the stock of fossil fuels depletes (Nordhaus

and Boyer 2000):

cFt = ξP1

(
∆F,E
t + ∆F,n

t

)2(XF
0 + ∆F,D

t

XF
t + ∆F,D

t

)
, (B.3)

1The database can be accessed online at http://www.bp.com/en/global/corporate/

about-bp/energy-economics/statistical-review-of-world-energy-2013.html
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where the parameter ξP1 captures the curvature of the liquid fossil fuel cost

function. We calibrate the values of the parameter ξP1 to match observed ex-

traction rates of oil and natural gas in the �rst decade of the 21st century. We

obtain the extraction quantities of oil and natural gas from the BP Statistical

Review of World Energy database (2013).

B.1.1.3 Other Primary Resources

The initial values for the production of other primary inputs come from GTAP

v.7 database and are de�ned as the value of output from labor (skilled and

unskilled), capital, and natural resources. We set the growth rate of other

primary resources as the di�erence between global GDP growth and total factor

productivity growth rates from Jorgenson and Vu (2010) projections based on

econometric estimates for 122 economies over the 1990 - 2008 period (see Figure

B.1, panel b).

B.1.2 Intermediate Inputs

B.1.2.1 Petroleum Products

The re�ning of petroleum, xpt , is a chemical engineering process that can be

described by a linear production function:

xpt = θpt∆F,E
t , (B.4)

where θp is the rate of conversion of fossil fuels to petroleum products. We

set θp based on the conversion factor supplied by the U.S. Energy Informa-

tion Administration.2 We obtain the expenditures on re�ning fossil fuels into

petroleum products from GTAP v.7 database (sectors 16, 17, and 32), and nor-

malize them by the total expenditures on other primary resources. To compute

the normalized average cost of re�ning fossil fuels, co,p, we divide normalized

expenditures on the amount of petroleum products produced in 2004, which we

obtain from BP Statistical Review of World Energy database (2013).

2See http://www.eia.gov/tools/faqs/faq.cfm?id=24&t=7.
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B.1.2.2 Fertilizers

The production of fertilizers, xnt , is a chemical engineering process that can be

described by a linear production function:

xnt = θn∆F,n
t , (B.5)

where θn is the rate of conversion of fossil fuels to fertilizers. There are three

types of fertilizer used in agricultural production: nitrogen fertilizers, phosphate

fertilizers, and potash fertilizers. In our model we focus on nitrogen fertilizers.

These fertilizers are particularly important in the climate policy debate, because

their production is the most energy- and GHG- intensive. They are also criti-

cal to boosting yields in response to scarcity of land.3 We use the FAOSTAT

database4 to obtain the global production of nitrogen fertilizers in 2004. For

fertilizers' production costs and conversion rates we consider anhydrous ammo-

nia (NH3), which is one of the most common nitrogen fertilizers. We use USDA

ERS fertilizer use and price dataset5 to obtain the fertilizers' price. We then

subtract the fossil fuels' price from the fertilizers' price to obtain non-energy

cost of fertilizers' production. This cost does not vary much across time be-

cause fossil fuels' and nitrogen fertilizers' prices are highly correlated and follow

the same trend (USGAO 2003). To compute the normalized average cost of

conversion of fossil fuels to fertilizers, co,n, we multiply the non-energy cost of

fertilizers' production by its expenditure share in other primary resources.

B.1.2.3 Crops

The production of crops, xc, uses agricultural land and fertilizers inputs, which

are imperfect substitutes in plant breeding. The output of crops is determined

by the constant elasticity of substitution (CES) function:

xct = θct

(
αn
(
LAt
)ρn

+ (1− αn) (xnt )
ρn
) 1
ρn
, (B.6)

3Note that by von Liebig's Law of the Minimum (yield is proportional to the amount of
the most limiting nutrient, whichever nutrient it may be) the production of other two types
of fertilizers will follow the path of nitrogen fertilizers.

4Thorough description of the FAOSTAT database is available from the following website:
http://faostat.fao.org/.

5Thorough description of the dataset is available from the following website: http://www.
ers.usda.gov/Data/FertilizerUse/.

13



where θct and αn are, respectively, the crop productivity index and the value

share of land in production of crops at the benchmark time 0. The parame-

ter ρn = σn−1
σn

is a CES function parameter proportional to the elasticity of

substitution of agricultural land for fertilizers, σn.

The amount of food crops (measured as the global physical production of

agricultural crops) and global expenditures on food crops in 2004 come from

the FAOSTAT database. The elasticity of substitution of nitrogen fertilizers

for agricultural land is based on Hertel et al. (1996) estimates for the US corn

production over the 1976-1990 period. We obtain the economic rent of global

cropland from GTAP v.7 database. The values of crop technology index and

shares of agricultural land and fertilizers in 2004 are calibrated from known

values of agricultural output, fertilizers, and the agricultural land as described

in Rutherford (2002).

We obtain the non land expenditures of producing food crops from GTAP

v.7 database (sectors 1-8), and normalize them by the total expenditures on

other primary resources. To compute the normalized average cost of producing

food crops, co,c, we divide normalized expenditures on the amount of food crops

produced in 2004.

B.1.2.4 Biofuels

In the model baseline we de�ne the �rst-generation biofuels as a grain-based

ethanol. The production of biofuels, xb, is a chemical engineering process that

can be described by a linear production function:

xbt = θbxc,bt , (B.7)

where θb is the rate of conversion of biofuels' crops, xc,b, to biofuels. The amount

of biofuels produced in 2004 comes from BP Statistical Review of World Energy

database (2013). The values for biofuels conversion rate and cost for ethanol

are taken from Taheripour and Tyner (2011). Following Winston (2009) we

adjust the quantity of �rst generation biofuels produced by 0.7 to match the

energy content of liquid fossil fuels. To compute the normalized average cost of

conversion of fossil fuels to fertilizers, co,b, we multiply the average conversion

cost of biofuels by its expenditure share in other primary resources.
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B.1.2.5 Raw Timber

The production of raw timber comes from harvesting managed forest lands. A

hectare of managed forest land of vintage v yields θwv tons of raw timber, xwv .

The parameter θwv is the merchantable timber yield, which is monotonically

increasing in the average tree density of age v. Forest land becomes eligible

for harvest when planted trees reach a minimum age for merchantable timber,

v. Managed forest areas with the average density of oldest trees vmax have the

highest yield of θwvmax
. They do not grow further and stay until harvested. The

following equation describes production of raw timber:

xwt =

vmax∑
v=1

θwv,t∆
C,H
v,t . (B.8)

Following Sohngen and Mendelsohn (2007) and Sohngen et al. (2009b) we

assume that the merchantable timber yield function is given by the following

equation:

θwv,t =

0.00001 if v ≤ v

θ
w

v (1 + κwv t) if v > v
, θ
w

v = exp

(
ψa −

ψb
v − v

)
(B.9)

In equation (B.9),the parameters ψ1 and ψ2 are growth parameters determin-

ing the support and the slope of the timber yield function, and v is a minimum

age for merchantable timber. To calculate the yield function (B.9) parameter

ψb, we use well-known Faustmann theorem, which states that the optimal time

to cut the forest is when the time rate of change of its value is equal to interest

on the value of the forest plus the interest on the value of the land (Brazee

and Mendelsohn 1990). Speci�cally, we solve numerically for ψb, assuming that

the optimal time to cut the forest is when it reaches the age of the oldest tree

vintage, vmax, and the interest on the value of the forest plus the interest on the

value of the land is equal to the socially optimal rate of time preference, which

we discuss in section B.1.4 below. Once we obtain the value of ψb, we can infer

the parameter ψa using the data on carbon stock embodied in managed forests.

Speci�cally we solve the following equation:

vmax∑
v=1

µ exp

(
ψa −

ψb
v

)
LCv,0 = ZC , (B.10)

where the parameters µ and ZC denote the stocking density and the embodied

15



carbon stock in managed forests. Contrary to equation (B.9), we do not include

the minimum age parameter in equation (B.10) as younger tree vintages absorb

carbon without giving timber bene�ts (Sohngen et al. 2009a). We obtain the

stocking density and the embodied carbon stock, as well as the minimum age

for merchantable timber from GTAP Global Forestry Data Base (Sohngen et al.

2009b). We assume that the merchantable timber yield per hectare of forest land

with the average tree age v grows linearly across time, adding a constant amount

of technology gain per annum (see Figure B.1, panel d):

θwv,t+1 = θwv,t + κwv , (B.11)

where the parameters θwv,0 and κ
w
v correspond to the initial levels and technology

gains to the merchantable timber yield of vintage v. We obtain the data for

yield growth in the commercial forestry sector by annualizing the di�erence in

the average yields from global forest studies of Sedjo (1983) and Cubbage et al.

(2010).

We assume that the average harvesting costs per ton of raw timber, are

invariant to scale and are the same across all managed forest areas of di�erent

age. With continuous growth up to vintage vmax, the average long-run cost

of harvesting per hectare of managed forest land, co,w, is therefore a declining

function of timber output. The average planting costs per hectare of newly

forest planted, are invariant to scale and are the same across all vintages. We

obtain the average harvesting and replanting costs from GTAP Global Forestry

Data Base (Sohngen et al. 2009b). To compute the normalized average costs of

replanting, cp, and harvesting, co,n, we multiply corresponding average costs by

their expenditure shares in other primary resources.

Harvest of managed forests and conversion of harvested forest land to agri-

cultural land is subject to additional near term adjustment costs, cH . Forest

harvesting costs are given by

cHt = ξH1

(
∆C,H
t −∆C,C

t

)2
+
∑
v

ξH2
LCv,t+1 + ξH2

, (B.12)

where the parameters ξw1 and ξw2 correspond to short-run adjustment costs of

harvesting and rotation. We calibrate these short-run adjustment costs to match

recent global trends in commercial forestry (FAO 2010).
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B.1.3 Final Goods and Services

We assume that technology indices in food and timber processing, energy, and

other goods and services sector is described by the following equation:

θit = θi0(1 + κi)t, i = f, e, s, o, (B.13)

where the parameters θi0 and κi re�ect the initial level and annual growth rate

in technologies of these sectors. We assume that the technology growth rates

are the same across these sectors and are equal to the global economy's total

factor productivity growth rate, κo.

B.1.3.1 Processed Food

We calculate the level of technology index of the food processing in 2004 using

GTAP v.7 database, by dividing the output of services from processed grains

and crops (GTAP sectors 21, 23-25) by the output of grains and cereals (GTAP

sectors 1-8). We obtain the food processing costs from GTAP v.7 database

(GTAP sectors 21, 23-25), and normalize them by the total expenditures on

other primary resources. To compute the normalized average cost of producing

services from processed food, co,f , we divide normalized expenditures by the

output of services from processed grains and crops produced in 2004.

B.1.3.2 Energy Services

We obtain the initial values for total consumption of liquid fossil fuels and �rst

generation biofuels from the BP Statistical Review of World Energy database

(2013). The elasticity of substitution of fossil fuels for �rst generation biofuels is

based on Hertel et al. (2010) econometric estimates for the US biofuel industry

over the 2001-2008 period. Energy e�ciency index, and the value shares of

biofuels and fossil fuels in energy production in 2004 are calibrated as described

in Rutherford (2002).

B.1.3.3 Processed Timber

We calculate the level of technology index of the timber processing sector in

2004 using GTAP v.7 data, by dividing the output of timber products (GTAP

sectors 30-31) by the output of commercial forestry sector (GTAP sector 13). We

obtain the timber processing costs from GTAP v.7 database (GTAP sectors 30-

31), and normalize them by the total expenditures on other primary resources.
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To compute the normalized average cost of producing services from processed

timber, co,s, we divide normalized expenditures by the output of services from

processed timber produced in 2004.

B.1.3.4 Ecosystem Services

The parameters for production of ecosystem services in production function

A.20 are based on the estimates of Costanza et al. (1997), who estimated values

for 17 ecosystem services from 16 ecosystem types at global scale.6 We exclude

the services from the production of food and timber, as well as from based cli-

mate abatement, as those are determined endogenously in the model. We also

exclude the production of ecosystem services from ecosystems not represented

in the model (e.g., marine, grasslands and deserts). We use agroecological zone

(AEZ) representation of GTAP land use database to di�erentiate between trop-

ical and temperate/boreal forest land. Based on ecological literature (Ehrlich

and Mooney 1983) we assume that there is a limited substitution between dif-

ferent land types in production of ecosystem services. Because e�ectiveness of

protected land areas is very di�cult to quantify (Chape et al. 2005), we set the

parameter θR large enough to make sure new protected areas are established.

We measure the non-land costs of managing protected natural areas based on

GTAP v.7 database as public expenditures on outdoor recreation services per

hectare of protected land,7 and normalize them by the total expenditures on

other primary resources. To compute the normalized average cost of producing

ecosystem services, co,r, we divide normalized expenditures by the output of

ecosystem services per hectare of protected land produced in 2004.

B.1.3.5 Other Final Goods and Services

The initial values for the production of other goods and services are based on the

value of output at agents' prices from GTAP v.7 database. The production of

other goods and services is obtained from GTAP v.7 sectors 9-12, 14-15, 18-20,

22, 26-29, 33-42, 45, 47-54 and 56-57. The value of the total factor productivity

index in 2004 is calculated as the ratio of other �nal goods and services to other

primary goods and services. We set total factor productivity growth rate using

6We are familiar with multiple criticisms of this approach National Research Council (2005,
p. 188-189). However, there have been very few attempts to evaluate production of ecosystem
services at global scale, and the work of Costanza et al. (1997) still remains most in�uential.

7Following Antoine et al. (2008), we de�ne outdoor recreation services sector based on
GTAP v.7 database. This sector comprises of hunting and �shing, wildlife viewing in reserves,
and other wildlife viewing activities.
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Jorgenson and Vu (2010) projections based on econometric estimates for 122

economies over the 1990 - 2008 period (see Figure B.1, panel c).

B.1.4 Population, Preferences, and Welfare

B.1.4.1 Population

We assume that the population, Πt, follows logistic (Verhulst) model with de-

clining growth rates over time:

Πt =
ΠTΠ0e

πt

ΠT + Π0 (eπt − 1)
, (B.14)

where Π0 is level of population in 2004, ΠT is the limiting population in 2104,

and π is the population growth rate. Compared to standard exponential growth

assumption the logistic model provides a better �t to demographic projections,

and has been recently adapted in the economic literature (Guerrini 2006, Bucci

and Guerrini 2009, Guerrini 2010). Data on population in 2004 are from GTAP

v.7 database. The estimate of limiting population is from United Nations De-

partment of Economic and Social A�airs Population Division (2011). The logis-

tic growth rate of population is calibrated to match United Nations Department

of Economic and Social A�airs Population Division (2011) demographic projec-

tions (see Figure B.1, panel a).

B.1.4.2 Preferences

The parameters αq, βq and yq de�ning the varying marginal budget shares of

goods and services and the subsistence level of consumption q in the consumers'

total real expenditures in equation (A.30), are estimated by maximum likelihood

based on the cross-section of 113 countries and regions listed in GTAP v.7

database as described in Cran�eld et al. (2003) and Yu et al. (2004). The

parameters αq and βqwere subsequently calibrated to match the allocation of

land resources in 2004, while keeping the key ratio
αq
βq

de�ning the income and

price elasticities constant.

We assume that the coe�cient of relative risk aversion parameter γ is equal

to 2, the value that has been commonly used in the economic modeling of climate

change (Weitzman 2010, Pindyck 2011).
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B.1.4.3 Welfare

We set the social discount rate to 5 percent, which has been previously used in

the economic analysis of land use in agriculture and forestry (Plantinga 1996,

Stavins 1999). We set the scrap value function to zero. We have tried other

functional forms and found it has a small e�ect on allocation of global land use

over the �rst hundred years, which are the focus of this study.

C.1 Solution Algorithm

This section presents the algorithm of parametric dynamic programming (DP)

with value function iteration for �nite horizon problems employed to solve the

dynamic stochastic model. Detailed discussion of numerical DP can be found in

Cai (2010), Judd (1998) and Rust (2008). In dynamic programming problems,

when the value function is continuous, it has to be approximated. We use a

�nitely parametrized collection of functions to approximate a value function,

V (x, θ) ≈ V̂ (x, θ;b), where x is the continuous state vector (in this study, it

is the (vmax + 4) dimensional vector,
(
LN , LA, LR, LC , XF

)
, and θ = θc is the

discrete state) and b is a vector of parameters. The functional form V̂ may be

a linear combination of polynomials, or it may represent a rational function or

neural network representation, or it may be some other parametrization espe-

cially designed for the problem. After the functional form is �xed, we focus on

�nding the vector of parameters, b, such that V̂ (x, θ;b) approximately satis�es

the Bellman equation, which can be written in a general form:

Vt(x, θ) = max
a∈D(x,t)

Ut(x, a) + δE
{
Vt+1(x+, θ+)

}
,

s.t. x+ = f(x, a, ω),

where Vt(x, θ) is the value function at time t ≤ T (the terminal value function

VT (x, θ) is given), a is the action variable vector (in this study, it includes

∆N,A,∆N,R,∆C,A,∆C,H ,∆C,C ,∆F,E
t ,∆F,n

t ,−→y , etc.), x+ is the next-stage state

vector
(
LNt+1, L

A
t+1, L

R
t+1, L

C
t+1, X

F
t+1

)
, D(x, t) is a feasible set of a, ω is a random

variable, δ is a discount factor and Ut(x, a) is the payo� function at time t.
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Algorithm 1 Value Function Iteration for the General Dynamic Programming
Model

Initialization. Choose the approximation nodes, Xt = {xi,t : 1 ≤ i ≤ Nt} for
every t < T , and choose a functional form for V̂ (x, θ;b) for every discrete
state θ ∈ Θ. Let V̂ (x, θ;bT ) = VT (x, θ). Then for t = T − 1, T − 2, . . . , 0,
iterate through steps 1 and 2.

Step 1. Maximization step. For each θj ∈ Θ, compute

vi,j = max
a∈D(xi,t)

Ut (xi, a) + βE
{
V̂
(
x+, θ+;bt+1

)}
, (C.1)

for each xi ∈ Xt, 1 ≤ i ≤ Nt, where (x+, θ+) is the next-stage state
transited from (xi, θj).

Step 2. Fitting step. Using an appropriate approximation method, compute
bt, such that V̂ (x, θj ;b

t) approximates {(xi, vi,j): 1 ≤ i ≤ Nt} data, i.e.,
vi,j ≈ V̂ (xi, θj ;b

t) for all xi ∈ Xt and θj ∈ Θ.

Algorithm 1 includes three types of numerical problems. First, we need to

solve a maximization problem at each node xi ∈ Xt. Second, the evaluation

of the objective requires us to compute an expectation. Third, we need to

e�ciently take the data and compute the best �t for the new value function.

The challenge is not only to use good numerical methods for each of these steps

but also to choose methods that are compatible with each other and jointly lead

to e�cient algorithms. Our code is written in FORTRAN and uses the methods

presented in Cai (2010), Cai and Judd (2010, 2014), Cai et al. (2013) and we

use NPSOL Gill et al. (1998) as the optimization solver in the maximization

step.
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D.1 Supplementary Figures
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Figure D.1: Consumption of Fertilizers and Biofuels under Climate and Tech-
nology Uncertainty
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