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Out there in the cloud, there is more computing power, and there are more
databases, more images, more models and more model output than have
ever existed before. There also are a variety of projects in different
countries to provide ways of making all that information more readily
available at different scales and to different types of users, such as the
Natural Environment Research Council-funded pilot Virtual Observatory
project in the UK, the Earth Cube initiative of the US National Science
Foundation, and the Global Earth Observation System of Systems. There
also are calls for hyper-resolution earth system science models at the global
scale, analogous to virtual observatories, as a way ahead in predicting
global change (Wood et al., 2011).
It therefore seems worthwhile to reflect on the nature of all that activity

in producing a virtual observatory as a representation of our under-
standing and observations of the real world. In effect, although a virtual
observatory might serve simply to facilitate access to existing observations,
there also will be a strong driver to blend those observations with
simulation models. A virtual observatory will then also serve to
manufacture virtual observations based on model simulations, either at
places where observations have not yet been made or at times in the past or
future where making additional observations is not actually possible and,
of course, at places where the actual observations are judged noisy,
unreliable, or incoherent.
In fact, the distinction between real and virtual observations is already

rather more blurred than it should be. In hydrology, it is not commonly the
case that stream discharge is a real observation. Much more often, it is
derived from measurements of water level through a rating curve. The
rating curve is itself a model that can be used to interpolate and
extrapolate to high and low discharges beyond the range of the available
measurements of discharge, with the possibility of making false extrapola-
tions. The form and parameters of that model may be more or less robust
and stationary depending on the characteristics of the site (e.g. Herschy,
2009; Westerberg et al., 2011). Similar considerations apply to many of the
variables used by hydrologists, including catchment inputs interpolated
from point rain gauges or estimates of rainfall inferred from radar
reflectivity, and variables derived from remote sensing digital numbers
through some interpretative model (that will have its own uncertain
parameters). Thus, many variables are already treated as observations
even if they are model derived or uncertain estimates of the real variables.
This should surely be considered bad practice. Model-derived variables

are not observations. They are virtual observations that should be clearly
distinguished from what is actually observed. It is then only a small step to
simulations of variables that are not directly observable (or have not been
observed) using simulation models. There will then be the possibility of
confusing virtual variables and direct observations. The ability for a user
to distinguish one from the other will fade away as ways of visualizing the
outputs from the virtual observatory become more and more sophisticated.
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In fact, it will generally be much easier to visualize
virtual variables in theee and four dimensions than
observation-derived variables because the observations
are limited in both space and time (or are not necessarily
the hydrological relevant variables), whereas the virtual
observations can appear to be complete in space and
time. However, a better visualization does not necessarily
mean better information content when it comes to
making decisions (see Beven and Cloke, 2012); a prettier
picture may not provide deeper insight and might
actually be misleading, particularly when uncertainties
are high.

So how do we try to ensure that virtual observatories
help to improve decision making rather than providing
misleading virtual information? When does the un-
avoidable error in the virtual information become
misinformation or disinformation? Clearly, some
model-derived or simulated variables might be expected
to be more robustly estimated than others, but it is quite
possible that virtual information could be misleading
because of all the uncertainties that arise in the
modelling process (see Beven, 2006, 2009), including
uncertainties, incommensurabilities and inconsistencies
in the available observations themselves (e.g. Beven and
Westerberg, 2011). In as much as the observations also
are imprecise, observational error will mix with
epistemic representational error, and the resulting
product will infect the entirety of the virtual observa-
tional space. Unlike those forms of observational error
that can be considered as aleatory, there are no
techniques corresponding to confidence intervals/error
bars once the error goes viral in this way. Deep
questions regarding ‘simple’ operations, like subtract-
ing a virtual observation from an actual observation,
led Lorenz to coin the word ‘subtractable’ (Lorenz
1985, Smith 2006) in the context of evaluating forecasts.
Worse, in combining virtual and observed variables,
the observational errors and gaps can be easily
obscured if not made truly invisible. This also should
be considered to be a bad practice.

A virtual observatory can be (at best) an approxi-
mate description of the real system under study. So the
question is for which purposes can we expect this
approximation to be adequate and for which will it be
significantly misinformative. There are very many
different types of purpose for which such a system
might be useful in catchment management decisions.
That naturally leads to a further question of how to
define whether a model should be considered ‘adequate’
in making predictions about the future that might be
used to inform such decisions, especially when there is
necessarily epistemic uncertainty about the boundary
conditions (and also the process representations) for
such predictions into the future (see Parker 2010). Of
course, what proves adequate for one decision maker
will not prove adequate for another, leading to a variety
190Copyright © 2012 John Wiley & Sons, Ltd.
of competing virtual worlds without a clear indication
of which might be the most useful for a given purpose.
This is not a question that has been widely discussed

in the literature. There are many studies that have
simply taken available models, generally with some
calibration against past data, and used them for
predicting the impacts of future change. However, the
best available model (or models) might not necessarily
be fit for purpose for such applications (e.g. Smith,
2000, 2006; Beven, 2010, 2011). Again, some tests of
adequacy are required, at least in representing the past
and present even if we cannot fully test adequacy in
evaluating the impacts of change. The virtual observa-
tory will need to convey that assessment of adequacy to
the users and decision makers in some way. There is no
tradition of doing so for hydrological variables, even
for the estimation of discharges (although this is
starting to change).
The question of how to calibrate or condition a model

or models based on past data, and how to represent
their uncertainties, has been extensively discussed in the
literature. Therefore, it might seem surprising that
there is not already a consensus about defining an
adequate model or (ensemble of models) but only a
competing range of methodologies (BATEA, DREAM,
GLUE and others). This is in part because of a lack of
agreement about how to handle the wide range of
uncertainties in the modelling process (e.g. Beven, 2006,
2010). Statistical methods, including Bayesian
methodologies, are limited to fitness within a model
class, which, assumed to be valid, then equates
‘maximum likelihood’ with ‘fit for purpose’. Challenges
arise when descriptive models, which are valuable for
understanding the relative importance of various
processes but which were never intended to be taken
seriously in terms of their quantitative outputs because
of known unknowns, are cast as providing relevant
quantitative outputs that are merely uncertain.
What part should such descriptive models play in a
virtual observatory?
The tradition in hydrology also is to think in terms of

the identification of parameters rather than testing
models as adequate hypotheses of how a catchment
functions, given a set of data and many sources of
uncertainty. What is needed in defining whether a
model is adequate is some form of hypothesis testing
that allows for the fact that many of the sources of
uncertainty are epistemic rather than aleatory in nature
(e.g. Smith, 2006; Beven, 2010; Buytaert and Beven,
2011) while avoiding Hume’s pitfall of induction
(Howson, 2003). In particular, virtual observatories
aim to represent everywhere, but the observations that
might normally be used to assess models are not
available everywhere (Beven, 2007). Thus, epistemic
uncertainties are generic to the virtual observatory. The
best that can be hoped is that a model can be shown to
6 Hydrol. Process. 26, 1905–1908 (2012)
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shadow the available observations within the limits of
observational error (including the observations used
to create the inputs to a model) (Beven, 2006, 2010;
Smith, 2006).
That is exactly why defining whether a model is

adequate or fit for purpose is so difficult. Models are
approximations and cannot be expected to shadow
forever, but the time scales on which a model does
shadow indicates the time scales on which it is
conceivable to argue that we are dealing with measure-
ment uncertainties in the inputs. On longer time scales,
the issue is not uncertainty but indeterminacy, and the
methodologies for hypothesis testing in the face of these
epistemic issues are not well developed. So there are
some really important questions to be resolved in
setting up virtual observatories as modelled realities.
Hypothesis testing might then need to rely on more
qualitative input of information into the virtual
observatory (photographs, observations by local
residents, . . ..) or on defining critical experiments
designed for hypothesis testing. A framework for
hypothesis testing needs to evolve within such virtual
observatories that goes beyond simply using the best
available models, especially where these do not shadow
the observations to within limits of observational
error (as is the case for many environmental models).
Models that fail such tests might not provide adequate
evidence for decision making, even if they are the only
predictions available.
However, this is not (only) a problem; it is an

opportunity, an opportunity either to improve our
methodology for using models (and the models
themselves) to overcome those deficiencies or, if that is
not possible within the time scale required for a
decision, to come to a better decision in some other
way. Such an approach is entirely consistent with a
scientific methodology based on hypothesis testing and
is more likely to avoid false confidence.
However, what form of hypothesis testing is possible

when we fully understand that there are epistemic
uncertainties in the modelling process? If, in the words
of George Box, all models are wrong but some are
useful, how is it possible to distinguish between the
patently wrong and the useful approximation when, in
general, we might expect to see a wide spectrum of
performance, regardless of performance measure, and
when any information available to evaluate model
performance also might be subject to both epistemic
and random errors?
Statistical methods for hypothesis testing are well

developed, but what they offer is weak: ‘rejection’ or
‘failure to reject’ conditional on assuming that a
model structure is correct and that data are subject
only to random errors. This is effectively an
assumption that epistemic uncertainties are negligible
(or can be represented as if they were random in
190Copyright © 2012 John Wiley & Sons, Ltd.
nature). It is difficult to see how such an assumption
is tenable in modelling catchment processes.
However, what is the alternative? We cannot

represent epistemic errors explicitly because if we knew
how to represent them, they would no longer be
epistemic. It is perhaps therefore necessary to focus
on the expression of being fit for purpose with respect to
past performance. What should be our expectations of a
model that would be considered fit for purpose? We
would wish it to have the functionality not only to be
consistent with past observations but also to predict
future conditions (although we cannot test the latter
until the future evolves). We would not expect it to fit
every past observation precisely; it is, after all, an
approximation, and the input data and evaluation
observations also are subject to epistemic uncertainties.
However, consistency does imply adequate perform-
ance after allowing for potential errors in the available
data. So how close to an observation does a prediction
need to be for a model to be accepted as fit for purpose?
Can the limits of acceptability be defined, given only the
past performance, some available observations, and a
knowledge of the time and space scales required for a
particular purpose (Smith, 2000, 2006; Beven, 2010)?
How far should failure on a single measure of acceptabil-
ity lead to rejection of an otherwise acceptable model?
Thatmight be a rogue observation, or itmight be a critical
observation that would lead to re-evaluation of the model
concepts.
There is the possibility of multiple representations

satisfying some limits of acceptability. There also is a
possibility that none of the representations will prove
acceptable (e.g. Beven, 2006). Virtual observatory
visualizations will need to convey such ambiguity
and imprecision in a way that users can understand so
that they are empowered to make informed decisions,
given the limited realism of what they see before them.
This will be a challenge, as it is already a challenge in
presenting the results of the ensemble of available
global climate models, when all the available models
are subject to significant epistemic uncertainties (and
often have systematic errors larger than the expected
signal) (Beven, 2011; Smith and Stern, 2011). The
growth of scientific computing in the second half of
the 20th century admitted many instances of over-
confidence in the quantification of environmental
systems, which led to false precision and (undoubtedly)
some poor decision making. The challenge is to
avoid similar claims of over-realism in the virtual
observatories of this century.
It is still the case that very few studies in catchment

science have posed the question of model evaluation
in this way. Yet it seems to be critical as modelling
moves towards virtual observatory platforms and
models of everywhere. There is some evidence that it
might be important to involve stakeholders with local
7 Hydrol. Process. 26, 1905–1908 (2012)
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knowledge into this type of framework; they will
sometimes be able to identify model inadequacies
(e.g. Beven, 2007; Lane et al., 2011). However, this is
also really a collection of science problems: of how
to define assumptions about input errors in setting
limits of acceptability for different applications; of
how to evaluate all the available models that might be
consistent with those limits of acceptability even
given cloud computing resources; of how to define
observational programs for testing those models as
hypotheses as a way of constraining the uncertainty
in the simulated outcomes; and of how to use the
outcomes within a decision-making framwork. Con-
sidering these questions might actually provide a way
of doing hydrological science within virtual observa-
tory representations of hydrological realities.
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